4 research outputs found

    Improving Image Clustering With Multiple Pretrained CNN Feature Extractors

    Full text link
    For many image clustering problems, replacing raw image data with features extracted by a pretrained convolutional neural network (CNN), leads to better clustering performance. However, the specific features extracted, and, by extension, the selected CNN architecture, can have a major impact on the clustering results. In practice, this crucial design choice is often decided arbitrarily due to the impossibility of using cross-validation with unsupervised learning problems. However, information contained in the different pretrained CNN architectures may be complementary, even when pretrained on the same data. To improve clustering performance, we rephrase the image clustering problem as a multi-view clustering (MVC) problem that considers multiple different pretrained feature extractors as different "views" of the same data. We then propose a multi-input neural network architecture that is trained end-to-end to solve the MVC problem effectively. Our experimental results, conducted on three different natural image datasets, show that: 1. using multiple pretrained CNNs jointly as feature extractors improves image clustering; 2. using an end-to-end approach improves MVC; and 3. combining both produces state-of-the-art results for the problem of image clustering.Comment: 13 pages, 3 figures, 4 tables. Poster presentation at BMVC 2018 (29.9% acceptance

    Big-Data Clustering: K-Means or K-Indicators?

    Full text link
    The K-means algorithm is arguably the most popular data clustering method, commonly applied to processed datasets in some "feature spaces", as is in spectral clustering. Highly sensitive to initializations, however, K-means encounters a scalability bottleneck with respect to the number of clusters K as this number grows in big data applications. In this work, we promote a closely related model called K-indicators model and construct an efficient, semi-convex-relaxation algorithm that requires no randomized initializations. We present extensive empirical results to show advantages of the new algorithm when K is large. In particular, using the new algorithm to start the K-means algorithm, without any replication, can significantly outperform the standard K-means with a large number of currently state-of-the-art random replications

    Self-Supervised Learning in Multi-Task Graphs through Iterative Consensus Shift

    Full text link
    The human ability to synchronize the feedback from all their senses inspired recent works in multi-task and multi-modal learning. While these works rely on expensive supervision, our multi-task graph requires only pseudo-labels from expert models. Every graph node represents a task, and each edge learns between tasks transformations. Once initialized, the graph learns self-supervised, based on a novel consensus shift algorithm that intelligently exploits the agreement between graph pathways to generate new pseudo-labels for the next learning cycle. We demonstrate significant improvement from one unsupervised learning iteration to the next, outperforming related recent methods in extensive multi-task learning experiments on two challenging datasets. Our code is available at https://github.com/bit-ml/cshift.Comment: Accepted at The British Machine Vision Conference (BMVC) 2021, 12 pages, 6 figures, 5 table

    Combining pretrained CNN feature extractors to enhance clustering of complex natural images

    Full text link
    Recently, a common starting point for solving complex unsupervised image classification tasks is to use generic features, extracted with deep Convolutional Neural Networks (CNN) pretrained on a large and versatile dataset (ImageNet). However, in most research, the CNN architecture for feature extraction is chosen arbitrarily, without justification. This paper aims at providing insight on the use of pretrained CNN features for image clustering (IC). First, extensive experiments are conducted and show that, for a given dataset, the choice of the CNN architecture for feature extraction has a huge impact on the final clustering. These experiments also demonstrate that proper extractor selection for a given IC task is difficult. To solve this issue, we propose to rephrase the IC problem as a multi-view clustering (MVC) problem that considers features extracted from different architectures as different "views" of the same data. This approach is based on the assumption that information contained in the different CNN may be complementary, even when pretrained on the same data. We then propose a multi-input neural network architecture that is trained end-to-end to solve the MVC problem effectively. This approach is tested on nine natural image datasets, and produces state-of-the-art results for IC.Comment: 21 pages, 16 figures, 10 tables, preprint of our paper published in Neurocomputin
    corecore