11 research outputs found

    CP-nets: From Theory to Practice

    Get PDF
    Conditional preference networks (CP-nets) exploit the power of ceteris paribus rules to represent preferences over combinatorial decision domains compactly. CP-nets have much appeal. However, their study has not yet advanced sufficiently for their widespread use in real-world applications. Known algorithms for deciding dominance---whether one outcome is better than another with respect to a CP-net---require exponential time. Data for CP-nets are difficult to obtain: human subjects data over combinatorial domains are not readily available, and earlier work on random generation is also problematic. Also, much of the research on CP-nets makes strong, often unrealistic assumptions, such as that decision variables must be binary or that only strict preferences are permitted. In this thesis, I address such limitations to make CP-nets more useful. I show how: to generate CP-nets uniformly randomly; to limit search depth in dominance testing given expectations about sets of CP-nets; and to use local search for learning restricted classes of CP-nets from choice data

    Hardware Acceleration of Electronic Design Automation Algorithms

    Get PDF
    With the advances in very large scale integration (VLSI) technology, hardware is going parallel. Software, which was traditionally designed to execute on single core microprocessors, now faces the tough challenge of taking advantage of this parallelism, made available by the scaling of hardware. The work presented in this dissertation studies the acceleration of electronic design automation (EDA) software on several hardware platforms such as custom integrated circuits (ICs), field programmable gate arrays (FPGAs) and graphics processors. This dissertation concentrates on a subset of EDA algorithms which are heavily used in the VLSI design flow, and also have varying degrees of inherent parallelism in them. In particular, Boolean satisfiability, Monte Carlo based statistical static timing analysis, circuit simulation, fault simulation and fault table generation are explored. The architectural and performance tradeoffs of implementing the above applications on these alternative platforms (in comparison to their implementation on a single core microprocessor) are studied. In addition, this dissertation also presents an automated approach to accelerate uniprocessor code using a graphics processing unit (GPU). The key idea is to partition the software application into kernels in an automated fashion, such that multiple instances of these kernels, when executed in parallel on the GPU, can maximally benefit from the GPU?s hardware resources. The work presented in this dissertation demonstrates that several EDA algorithms can be successfully rearchitected to maximally harness their performance on alternative platforms such as custom designed ICs, FPGAs and graphic processors, and obtain speedups upto 800X. The approaches in this dissertation collectively aim to contribute towards enabling the computer aided design (CAD) community to accelerate EDA algorithms on arbitrary hardware platforms

    Proceedings of SAT Competition 2013 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe

    Complete Randomized Cutting Plane Algorithms for Propositional Satisfiability

    Get PDF
    The propositional satisfiability problem (SAT) is a fundamental problem in computer science and combinatorial optimization. A considerable number of prior researchers have investigated SAT, and much is already known concerning limitations of known algorithms for SAT. In particular, some necessary conditions are known, such that any algorithm not meeting those conditions cannot be efficient. This paper reports a research to develop and test a new algorithm that meets the currently known necessary conditions. In chapter three, we give a new characterization of the convex integer hull of SAT, and two new algorithms for finding strong cutting planes. We also show the importance of choosing which vertex to cut, and present heuristics to find a vertex that allows a strong cutting plane. In chapter four, we describe an experiment to implement a SAT solving algorithm using the new algorithms and heuristics, and to examine their effectiveness on a set of problems. In chapter five, we describe the implementation of the algorithms, and present computational results. For an input SAT problem, the output of the implemented program provides either a witness to the satisfiability or a complete cutting plane proof of satisfiability. The description, implementation, and testing of these algorithms yields both empirical data to characterize the performance of the new algorithms, and additional insight to further advance the theory. We conclude from the computational study that cutting plane algorithms are efficient for the solution of a large class of SAT problems

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas
    corecore