36,338 research outputs found

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control

    Get PDF
    We propose a two-stage, on-line signal control strategy for dynamic networks using a linear decision rule (LDR) approach and a distributionally robust optimization (DRO) technique. The first (off-line) stage formulates a LDR that maps real-time traffic data to optimal signal control policies. A DRO problem is solved to optimize the on-line performance of the LDR in the presence of uncertainties associated with the observed traffic states and ambiguity in their underlying distribution functions. We employ a data-driven calibration of the uncertainty set, which takes into account historical traffic data. The second (on-line) stage implements a very efficient linear decision rule whose performance is guaranteed by the off-line computation. We test the proposed signal control procedure in a simulation environment that is informed by actual traffic data obtained in Glasgow, and demonstrate its full potential in on-line operation and deployability on realistic networks, as well as its effectiveness in improving traffic

    Organizational tension between static and dynamic efficiency, The

    Get PDF
    Efficiency has been defined in at least two different ways: in terms of the refinement of existing products, processes or capabilities (static efficiency) or the development of new ones (dynamic efficiency). This paper analyzes the organizational trade-off between these two forms of efficiency. It shows that there is a tendency towards extremes, and that the irreversibility of efficiency orientations tends to tip the balance to be struck between static and dynamic efficiency toward the latter. The paper also advances hypotheses about the industry, business and corporate factors that mediate between the choice of a particular efficiency orientation and organizational performance.organizational trade-off; efficiency;
    corecore