2 research outputs found

    Improving Document Binarization via Adversarial Noise-Texture Augmentation

    Full text link
    Binarization of degraded document images is an elementary step in most of the problems in document image analysis domain. The paper re-visits the binarization problem by introducing an adversarial learning approach. We construct a Texture Augmentation Network that transfers the texture element of a degraded reference document image to a clean binary image. In this way, the network creates multiple versions of the same textual content with various noisy textures, thus enlarging the available document binarization datasets. At last, the newly generated images are passed through a Binarization network to get back the clean version. By jointly training the two networks we can increase the adversarial robustness of our system. Also, it is noteworthy that our model can learn from unpaired data. Experimental results suggest that the proposed method achieves superior performance over widely used DIBCO datasets.Comment: IEEE International Conference on Image Processing (ICIP), 2019. The full source code of the proposed system is publicly available at https://github.com/ankanbhunia/AdverseBiNe

    UDBNET: Unsupervised Document Binarization Network via Adversarial Game

    Full text link
    Degraded document image binarization is one of the most challenging tasks in the domain of document image analysis. In this paper, we present a novel approach towards document image binarization by introducing three-player min-max adversarial game. We train the network in an unsupervised setup by assuming that we do not have any paired-training data. In our approach, an Adversarial Texture Augmentation Network (ATANet) first superimposes the texture of a degraded reference image over a clean image. Later, the clean image along with its generated degraded version constitute the pseudo paired-data which is used to train the Unsupervised Document Binarization Network (UDBNet). Following this approach, we have enlarged the document binarization datasets as it generates multiple images having same content feature but different textual feature. These generated noisy images are then fed into the UDBNet to get back the clean version. The joint discriminator which is the third-player of our three-player min-max adversarial game tries to couple both the ATANet and UDBNet. The three-player min-max adversarial game stops, when the distributions modelled by the ATANet and the UDBNet align to the same joint distribution over time. Thus, the joint discriminator enforces the UDBNet to perform better on real degraded image. The experimental results indicate the superior performance of the proposed model over existing state-of-the-art algorithm on widely used DIBCO datasets. The source code of the proposed system is publicly available at https://github.com/VIROBO-15/UDBNET.Comment: Submitted to ICPR 202
    corecore