73 research outputs found

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    FastPathology: An open-source platform for deep learning-based research and decision support in digital pathology

    Get PDF
    Deep convolutional neural networks (CNNs) are the current state-of-the-art for digital analysis of histopathological images. The large size of whole-slide microscopy images (WSIs) requires advanced memory handling to read, display and process these images. There are several open-source platforms for working with WSIs, but few support deployment of CNN models. These applications use third-party solutions for inference, making them less user-friendly and unsuitable for high-performance image analysis. To make deployment of CNNs user-friendly and feasible on low-end machines, we have developed a new platform, FastPathology, using the FAST framework and C++. It minimizes memory usage for reading and processing WSIs, deployment of CNN models, and real-time interactive visualization of results. Runtime experiments were conducted on four different use cases, using different architectures, inference engines, hardware configurations and operating systems. Memory usage for reading, visualizing, zooming and panning a WSI were measured, using FastPathology and three existing platforms. FastPathology performed similarly in terms of memory to the other C++ based application, while using considerably less than the two Java-based platforms. The choice of neural network model, inference engine, hardware and processors influenced runtime considerably. Thus, FastPathology includes all steps needed for efficient visualization and processing of WSIs in a single application, including inference of CNNs with real-time display of the results. Source code, binary releases and test data can be found online on GitHub at https://github.com/SINTEFMedtek/FAST-Pathology/.Comment: 12 pages, 4 figures, submitted to IEEE Acces

    Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features

    Get PDF
    Tumor segmentation in whole-slide images of histology slides is an important step towards computer-assisted diagnosis. In this work, we propose a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs). For a given image patch, the homology profiles are derived by efficient computation of persistent homology, which is an algebraic tool from homology theory. We propose an efficient way of computing topological persistence of an image, alternative to simplicial homology. The PHPs are devised to distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei. We propose two variants of our method for tumor segmentation: one that targets speed without compromising accuracy and the other that targets higher accuracy. The fast version is based on the selection of exemplar image patches from a convolution neural network (CNN) and patch classification by quantifying the divergence between the PHPs of exemplars and the input image patch. Detailed comparative evaluation shows that the proposed algorithm is significantly faster than competing algorithms while achieving comparable results. The accurate version combines the PHPs and high-level CNN features and employs a multi-stage ensemble strategy for image patch labeling. Experimental results demonstrate that the combination of PHPs and CNN features outperforms competing algorithms. This study is performed on two independently collected colorectal datasets containing adenoma, adenocarcinoma, signet and healthy cases. Collectively, the accurate tumor segmentation produces the highest average patch-level F1-score, as compared with competing algorithms, on malignant and healthy cases from both the datasets. Overall the proposed framework highlights the utility of persistent homology for histopathology image analysis

    Towards Secure and Intelligent Diagnosis: Deep Learning and Blockchain Technology for Computer-Aided Diagnosis Systems

    Get PDF
    Cancer is the second leading cause of death across the world after cardiovascular disease. The survival rate of patients with cancerous tissue can significantly decrease due to late-stage diagnosis. Nowadays, advancements of whole slide imaging scanners have resulted in a dramatic increase of patient data in the domain of digital pathology. Large-scale histopathology images need to be analyzed promptly for early cancer detection which is critical for improving patient's survival rate and treatment planning. Advances of medical image processing and deep learning methods have facilitated the extraction and analysis of high-level features from histopathological data that could assist in life-critical diagnosis and reduce the considerable healthcare cost associated with cancer. In clinical trials, due to the complexity and large variance of collected image data, developing computer-aided diagnosis systems to support quantitative medical image analysis is an area of active research. The first goal of this research is to automate the classification and segmentation process of cancerous regions in histopathology images of different cancer tissues by developing models using deep learning-based architectures. In this research, a framework with different modules is proposed, including (1) data pre-processing, (2) data augmentation, (3) feature extraction, and (4) deep learning architectures. Four validation studies were designed to conduct this research. (1) differentiating benign and malignant lesions in breast cancer (2) differentiating between immature leukemic blasts and normal cells in leukemia cancer (3) differentiating benign and malignant regions in lung cancer, and (4) differentiating benign and malignant regions in colorectal cancer. Training machine learning models, disease diagnosis, and treatment often requires collecting patients' medical data. Privacy and trusted authenticity concerns make data owners reluctant to share their personal and medical data. Motivated by the advantages of Blockchain technology in healthcare data sharing frameworks, the focus of the second part of this research is to integrate Blockchain technology in computer-aided diagnosis systems to address the problems of managing access control, authentication, provenance, and confidentiality of sensitive medical data. To do so, a hierarchical identity and attribute-based access control mechanism using smart contract and Ethereum Blockchain is proposed to securely process healthcare data without revealing sensitive information to an unauthorized party leveraging the trustworthiness of transactions in a collaborative healthcare environment. The proposed access control mechanism provides a solution to the challenges associated with centralized access control systems and ensures data transparency and traceability for secure data sharing, and data ownership

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Machine Learning Assisted Digital Pathology

    Get PDF
    Histopatologiset kudosnäytteet sisältävät valtavan määrän tietoa biologisista mekanismeista, jotka vaikuttavat monien tautien ilmenemiseen ja etenemiseen. Tästä syystä histopatologisten näytteiden arviointi on ollut perustana monien tautien diagnostiikassa vuosikymmenien ajan. Perinteinen histopatologinen arviointi on kuitenkin työläs tehtävä ja lisäksi erittäin altis inhimillisille virheille ja voi siten johtaa virheelliseen tai viivästyneeseen diagnoosiin. Viime vuosien teknologinen kehitys on tuonut patologien käyttöön lasiskannerit ja tiedonhallintajarjestelmät ja sitä myötä mahdollistaneet näytelasien digitoinnin ja käynnistäneet koko patologian työnkulun digitalisaation. Histopatologisten näytteiden saatavuus digitaalisina kuvina on puolestaan mahdollistanut älykkäiden algoritmien ja automatisoitujen laskennallisten kuva-analyysityökalujen kehittämisen diagnostiikan tueksi. Koneoppiminen on tekoälyn osa-alue, joka voidaan määritellä datasta oppimiseksi. Kuva-analyysin sovelluksissa, kuvan pikseliarvot muutetaan kvantitatiiviseksi piirre-esitykseksi jonka pohjalta kuva voidaan muuntaa merkitykselliseksi tiedoksi hyvödyntämällä koneoppimista. Vuosien saatossa koneoppimiseen perustuvan kuva-analyysin menetelmät ovat kehittyneet manuaalisesta piirteidenirroituksesta kohti viimevuosien vallitsevia syväoppimiseen pohjautuvia konvoluutioneuroverkkoja. Koneoppimisen hyödyt histopatologisessa arvioinnissa ovat huomattavat, sillä koneoppiminen mahdollistaa kuvien tulkinnan patologiin verrattavalla tarkkuudella ja siten pystyy merkittävästi parantamaan kliinisen patologian diagnostiikan tarkkuutta, toistettavuutta ja tehokkuutta. Tämä väitöstyö esittelee koneoppimiseen pohjautuvia menetelmiä jotka on kehitetty avustamaan kudosnäytteen histopatologista arviointia, vaihetta joka on merkityksellinen niin kliinisessä diagnostiikassa kuin prekliinisissä tutkimuksissa. Työssä esitellään piirteenirroituksen ja koneoppimisen tehokkuus histopatologiseen arviointiin liittyvissä kuva-analyysitehtävissä kuten kudoksen karakterisoinnissa, sekä rintasyövän etäpesäkkeiden, epiteelikudoksen ja tumien tunnistuksessa. Menetelmien lisäksi tässä väitöstyössä on käsitelty keskeisiä haasteita jotka on huomioitava integroitaessa koneoppimismenetelmiä kliiniseen käyttöön. Ennen kaikkea nämä tutkimukset ovat kuitenkin osoittaneet koneoppimisen mahdollisuudet tulevaisuudessa parantaa patologian kliinisten rutiinitehtävien tehokkuutta ja toistettavuutta sekä diagnostiikan laatua.Histopathological tissue samples contain a vast amount of information on underlying biological mechanisms that contribute to disease manifestation and progression. Therefore, diagnosis from histopathological tissue samples has been the gold standard for decades. However, traditional histopathological assessment is a laborious task and prone to human errors, thereby leading to misdiagnosis or delayed diagnosis. The development of whole slide scanners for digitization of tissue glass slides has initiated the transition to a fully digital pathology workflow that allows scanning, interpretation, and management of digital tissue slides. These advances have been the cornerstone for developing intelligent algorithms and automated computational approaches for histopathological assessment and clinical diagnostics. Machine learning is a subcategory of artificial intelligence and can be defined as a process of learning from data. In image analysis tasks, the raw pixel values are transformed into quantitative feature representations. Based on the image data representation, a machine learning model learns a set of rules that can be used to extract meaningful information and knowledge. Over the years, the field of machine learning based image analysis has developed from manually handcrafting complex features to the recent revolution of deep learning and convolutional neural networks. Histopathological assessment can benefit greatly from the ability of machine learning models to discover patterns and connections from the data. Therefore, machine learning holds great promise to improve the accuracy, reproducibility, and efficiency of clinical diagnostics in the field of digital pathology. This thesis is focused on developing machine learning based methods for assisting in the process of histopathological assessment, which is a significant step in clinical diagnostics as well as in preclinical studies. The studies presented in this thesis show the effectiveness of feature engineering and machine learning in histopathological assessment related tasks, such as; tissue characterisation, metastasis detection, epithelial tissue detection, and nuclei detection. Moreover, the studies presented in this thesis address the key challenges related to variation presented in histopathological data as well as the generalisation problem that need to be considered in order to integrate machine learning approaches into clinical practice. Overall, these studies have demonstrated the potential of machine learning for bringing standardization and reproducibility to the process of histopathological assessment

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    corecore