37 research outputs found

    Going Far Boosts Attack Transferability, but Do Not Do It

    Full text link
    Deep Neural Networks (DNNs) could be easily fooled by Adversarial Examples (AEs) with an imperceptible difference to original ones in human eyes. Also, the AEs from attacking one surrogate DNN tend to cheat other black-box DNNs as well, i.e., the attack transferability. Existing works reveal that adopting certain optimization algorithms in attack improves transferability, but the underlying reasons have not been thoroughly studied. In this paper, we investigate the impacts of optimization on attack transferability by comprehensive experiments concerning 7 optimization algorithms, 4 surrogates, and 9 black-box models. Through the thorough empirical analysis from three perspectives, we surprisingly find that the varied transferability of AEs from optimization algorithms is strongly related to the corresponding Root Mean Square Error (RMSE) from their original samples. On such a basis, one could simply approach high transferability by attacking until RMSE decreases, which motives us to propose a LArge RMSE Attack (LARA). Although LARA significantly improves transferability by 20%, it is insufficient to exploit the vulnerability of DNNs, leading to a natural urge that the strength of all attacks should be measured by both the widely used β„“βˆž\ell_\infty bound and the RMSE addressed in this paper, so that tricky enhancement of transferability would be avoided

    DifAttack: Query-Efficient Black-Box Attack via Disentangled Feature Space

    Full text link
    This work investigates efficient score-based black-box adversarial attacks with a high Attack Success Rate (ASR) and good generalizability. We design a novel attack method based on a Disentangled Feature space, called DifAttack, which differs significantly from the existing ones operating over the entire feature space. Specifically, DifAttack firstly disentangles an image's latent feature into an adversarial feature and a visual feature, where the former dominates the adversarial capability of an image, while the latter largely determines its visual appearance. We train an autoencoder for the disentanglement by using pairs of clean images and their Adversarial Examples (AEs) generated from available surrogate models via white-box attack methods. Eventually, DifAttack iteratively optimizes the adversarial feature according to the query feedback from the victim model until a successful AE is generated, while keeping the visual feature unaltered. In addition, due to the avoidance of using surrogate models' gradient information when optimizing AEs for black-box models, our proposed DifAttack inherently possesses better attack capability in the open-set scenario, where the training dataset of the victim model is unknown. Extensive experimental results demonstrate that our method achieves significant improvements in ASR and query efficiency simultaneously, especially in the targeted attack and open-set scenarios. The code will be available at https://github.com/csjunjun/DifAttack.git soon
    corecore