8,708 research outputs found

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    ASR is all you need: cross-modal distillation for lip reading

    Full text link
    The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.Comment: ICASSP 202

    Teach me with a Whisper: Enhancing Large Language Models for Analyzing Spoken Transcripts using Speech Embeddings

    Full text link
    Speech data has rich acoustic and paralinguistic information with important cues for understanding a speaker's tone, emotion, and intent, yet traditional large language models such as BERT do not incorporate this information. There has been an increased interest in multi-modal language models leveraging audio and/or visual information and text. However, current multi-modal language models require both text and audio/visual data streams during inference/test time. In this work, we propose a methodology for training language models leveraging spoken language audio data but without requiring the audio stream during prediction time. This leads to an improved language model for analyzing spoken transcripts while avoiding an audio processing overhead at test time. We achieve this via an audio-language knowledge distillation framework, where we transfer acoustic and paralinguistic information from a pre-trained speech embedding (OpenAI Whisper) teacher model to help train a student language model on an audio-text dataset. In our experiments, the student model achieves consistent improvement over traditional language models on tasks analyzing spoken transcripts.Comment: 11 page

    Radio2Text: Streaming Speech Recognition Using mmWave Radio Signals

    Full text link
    Millimeter wave (mmWave) based speech recognition provides more possibility for audio-related applications, such as conference speech transcription and eavesdropping. However, considering the practicality in real scenarios, latency and recognizable vocabulary size are two critical factors that cannot be overlooked. In this paper, we propose Radio2Text, the first mmWave-based system for streaming automatic speech recognition (ASR) with a vocabulary size exceeding 13,000 words. Radio2Text is based on a tailored streaming Transformer that is capable of effectively learning representations of speech-related features, paving the way for streaming ASR with a large vocabulary. To alleviate the deficiency of streaming networks unable to access entire future inputs, we propose the Guidance Initialization that facilitates the transfer of feature knowledge related to the global context from the non-streaming Transformer to the tailored streaming Transformer through weight inheritance. Further, we propose a cross-modal structure based on knowledge distillation (KD), named cross-modal KD, to mitigate the negative effect of low quality mmWave signals on recognition performance. In the cross-modal KD, the audio streaming Transformer provides feature and response guidance that inherit fruitful and accurate speech information to supervise the training of the tailored radio streaming Transformer. The experimental results show that our Radio2Text can achieve a character error rate of 5.7% and a word error rate of 9.4% for the recognition of a vocabulary consisting of over 13,000 words.Comment: Accepted by Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (ACM IMWUT/UbiComp 2023

    Incorporating Ultrasound Tongue Images for Audio-Visual Speech Enhancement

    Full text link
    Audio-visual speech enhancement (AV-SE) aims to enhance degraded speech along with extra visual information such as lip videos, and has been shown to be more effective than audio-only speech enhancement. This paper proposes the incorporation of ultrasound tongue images to improve the performance of lip-based AV-SE systems further. To address the challenge of acquiring ultrasound tongue images during inference, we first propose to employ knowledge distillation during training to investigate the feasibility of leveraging tongue-related information without directly inputting ultrasound tongue images. Specifically, we guide an audio-lip speech enhancement student model to learn from a pre-trained audio-lip-tongue speech enhancement teacher model, thus transferring tongue-related knowledge. To better model the alignment between the lip and tongue modalities, we further propose the introduction of a lip-tongue key-value memory network into the AV-SE model. This network enables the retrieval of tongue features based on readily available lip features, thereby assisting the subsequent speech enhancement task. Experimental results demonstrate that both methods significantly improve the quality and intelligibility of the enhanced speech compared to traditional lip-based AV-SE baselines. Moreover, both proposed methods exhibit strong generalization performance on unseen speakers and in the presence of unseen noises. Furthermore, phone error rate (PER) analysis of automatic speech recognition (ASR) reveals that while all phonemes benefit from introducing ultrasound tongue images, palatal and velar consonants benefit most.Comment: Submmited to IEEE/ACM Transactions on Audio, Speech and Language Processing. arXiv admin note: text overlap with arXiv:2305.1493

    Enhanced Multimodal Representation Learning with Cross-modal KD

    Full text link
    This paper explores the tasks of leveraging auxiliary modalities which are only available at training to enhance multimodal representation learning through cross-modal Knowledge Distillation (KD). The widely adopted mutual information maximization-based objective leads to a short-cut solution of the weak teacher, i.e., achieving the maximum mutual information by simply making the teacher model as weak as the student model. To prevent such a weak solution, we introduce an additional objective term, i.e., the mutual information between the teacher and the auxiliary modality model. Besides, to narrow down the information gap between the student and teacher, we further propose to minimize the conditional entropy of the teacher given the student. Novel training schemes based on contrastive learning and adversarial learning are designed to optimize the mutual information and the conditional entropy, respectively. Experimental results on three popular multimodal benchmark datasets have shown that the proposed method outperforms a range of state-of-the-art approaches for video recognition, video retrieval and emotion classification.Comment: Accepted by CVPR202

    Multimodal Transformer Distillation for Audio-Visual Synchronization

    Full text link
    Audio-visual synchronization aims to determine whether the mouth movements and speech in the video are synchronized. VocaLiST reaches state-of-the-art performance by incorporating multimodal Transformers to model audio-visual interact information. However, it requires high computing resources, making it impractical for real-world applications. This paper proposed an MTDVocaLiST model, which is trained by our proposed multimodal Transformer distillation (MTD) loss. MTD loss enables MTDVocaLiST model to deeply mimic the cross-attention distribution and value-relation in the Transformer of VocaLiST. Our proposed method is effective in two aspects: From the distillation method perspective, MTD loss outperforms other strong distillation baselines. From the distilled model's performance perspective: 1) MTDVocaLiST outperforms similar-size SOTA models, SyncNet, and PM models by 15.69% and 3.39%; 2) MTDVocaLiST reduces the model size of VocaLiST by 83.52%, yet still maintaining similar performance.Comment: Submitted to ICASSP 202
    • …
    corecore