97,591 research outputs found

    Improving Nighttime Retrieval-Based Localization

    Full text link
    Outdoor visual localization is a crucial component to many computer vision systems. We propose an approach to localization from images that is designed to explicitly handle the strong variations in appearance happening between daytime and nighttime. As revealed by recent long-term localization benchmarks, both traditional feature-based and retrieval-based approaches still struggle to handle such changes. Our novel localization method combines a state-of-the-art image retrieval architecture with condition-specific sub-networks allowing the computation of global image descriptors that are explicitly dependent of the capturing conditions. We show that our approach improves localization by a factor of almost 300\% compared to the popular VLAD-based methods on nighttime localization

    Semantically-Aware Attentive Neural Embeddings for Image-based Visual Localization

    Full text link
    We present an approach that combines appearance and semantic information for 2D image-based localization (2D-VL) across large perceptual changes and time lags. Compared to appearance features, the semantic layout of a scene is generally more invariant to appearance variations. We use this intuition and propose a novel end-to-end deep attention-based framework that utilizes multimodal cues to generate robust embeddings for 2D-VL. The proposed attention module predicts a shared channel attention and modality-specific spatial attentions to guide the embeddings to focus on more reliable image regions. We evaluate our model against state-of-the-art (SOTA) methods on three challenging localization datasets. We report an average (absolute) improvement of 19%19\% over current SOTA for 2D-VL. Furthermore, we present an extensive study demonstrating the contribution of each component of our model, showing 88--15%15\% and 4%4\% improvement from adding semantic information and our proposed attention module. We finally show the predicted attention maps to offer useful insights into our model.Comment: Appearing in BMVC 201

    Weighted Bilinear Coding over Salient Body Parts for Person Re-identification

    Full text link
    Deep convolutional neural networks (CNNs) have demonstrated dominant performance in person re-identification (Re-ID). Existing CNN based methods utilize global average pooling (GAP) to aggregate intermediate convolutional features for Re-ID. However, this strategy only considers the first-order statistics of local features and treats local features at different locations equally important, leading to sub-optimal feature representation. To deal with these issues, we propose a novel weighted bilinear coding (WBC) framework for local feature aggregation in CNN networks to pursue more representative and discriminative feature representations, which can adapt to other state-of-the-art methods and improve their performance. In specific, bilinear coding is used to encode the channel-wise feature correlations to capture richer feature interactions. Meanwhile, a weighting scheme is applied on the bilinear coding to adaptively adjust the weights of local features at different locations based on their importance in recognition, further improving the discriminability of feature aggregation. To handle the spatial misalignment issue, we use a salient part net (spatial attention module) to derive salient body parts, and apply the WBC model on each part. The final representation, formed by concatenating the WBC encoded features of each part, is both discriminative and resistant to spatial misalignment. Experiments on three benchmarks including Market-1501, DukeMTMC-reID and CUHK03 evidence the favorable performance of our method against other outstanding methods.Comment: 22 page

    Deep Learning Driven Visual Path Prediction from a Single Image

    Full text link
    Capabilities of inference and prediction are significant components of visual systems. In this paper, we address an important and challenging task of them: visual path prediction. Its goal is to infer the future path for a visual object in a static scene. This task is complicated as it needs high-level semantic understandings of both the scenes and motion patterns underlying video sequences. In practice, cluttered situations have also raised higher demands on the effectiveness and robustness of the considered models. Motivated by these observations, we propose a deep learning framework which simultaneously performs deep feature learning for visual representation in conjunction with spatio-temporal context modeling. After that, we propose a unified path planning scheme to make accurate future path prediction based on the analytic results of the context models. The highly effective visual representation and deep context models ensure that our framework makes a deep semantic understanding of the scene and motion pattern, consequently improving the performance of the visual path prediction task. In order to comprehensively evaluate the model's performance on the visual path prediction task, we construct two large benchmark datasets from the adaptation of video tracking datasets. The qualitative and quantitative experimental results show that our approach outperforms the existing approaches and owns a better generalization capability

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Self-Supervised Learning for Stereo Matching with Self-Improving Ability

    Full text link
    Exiting deep-learning based dense stereo matching methods often rely on ground-truth disparity maps as the training signals, which are however not always available in many situations. In this paper, we design a simple convolutional neural network architecture that is able to learn to compute dense disparity maps directly from the stereo inputs. Training is performed in an end-to-end fashion without the need of ground-truth disparity maps. The idea is to use image warping error (instead of disparity-map residuals) as the loss function to drive the learning process, aiming to find a depth-map that minimizes the warping error. While this is a simple concept well-known in stereo matching, to make it work in a deep-learning framework, many non-trivial challenges must be overcome, and in this work we provide effective solutions. Our network is self-adaptive to different unseen imageries as well as to different camera settings. Experiments on KITTI and Middlebury stereo benchmark datasets show that our method outperforms many state-of-the-art stereo matching methods with a margin, and at the same time significantly faster.Comment: 13 pages, 11 figure

    Group Re-Identification with Multi-grained Matching and Integration

    Full text link
    The task of re-identifying groups of people underdifferent camera views is an important yet less-studied problem.Group re-identification (Re-ID) is a very challenging task sinceit is not only adversely affected by common issues in traditionalsingle object Re-ID problems such as viewpoint and human posevariations, but it also suffers from changes in group layout andgroup membership. In this paper, we propose a novel conceptof group granularity by characterizing a group image by multi-grained objects: individual persons and sub-groups of two andthree people within a group. To achieve robust group Re-ID,we first introduce multi-grained representations which can beextracted via the development of two separate schemes, i.e. onewith hand-crafted descriptors and another with deep neuralnetworks. The proposed representation seeks to characterize bothappearance and spatial relations of multi-grained objects, and isfurther equipped with importance weights which capture varia-tions in intra-group dynamics. Optimal group-wise matching isfacilitated by a multi-order matching process which in turn,dynamically updates the importance weights in iterative fashion.We evaluated on three multi-camera group datasets containingcomplex scenarios and large dynamics, with experimental resultsdemonstrating the effectiveness of our approach. The published dataset can be found in \url{http://min.sjtu.edu.cn/lwydemo/GroupReID.html}Comment: 14 pages, 10 figures, to appear in IEEE transaction on Cybernetic

    Image-to-Video Person Re-Identification by Reusing Cross-modal Embeddings

    Full text link
    Image-to-video person re-identification identifies a target person by a probe image from quantities of pedestrian videos captured by non-overlapping cameras. Despite the great progress achieved,it's still challenging to match in the multimodal scenario,i.e. between image and video. Currently,state-of-the-art approaches mainly focus on the task-specific data,neglecting the extra information on the different but related tasks. In this paper,we propose an end-to-end neural network framework for image-to-video person reidentification by leveraging cross-modal embeddings learned from extra information.Concretely speaking,cross-modal embeddings from image captioning and video captioning models are reused to help learned features be projected into a coordinated space,where similarity can be directly computed. Besides,training steps from fixed model reuse approach are integrated into our framework,which can incorporate beneficial information and eventually make the target networks independent of existing models. Apart from that,our proposed framework resorts to CNNs and LSTMs for extracting visual and spatiotemporal features,and combines the strengths of identification and verification model to improve the discriminative ability of the learned feature. The experimental results demonstrate the effectiveness of our framework on narrowing down the gap between heterogeneous data and obtaining observable improvement in image-to-video person re-identification.Comment: under review for Pattern Recognition Letter

    Orientation Driven Bag of Appearances for Person Re-identification

    Full text link
    Person re-identification (re-id) consists of associating individual across camera network, which is valuable for intelligent video surveillance and has drawn wide attention. Although person re-identification research is making progress, it still faces some challenges such as varying poses, illumination and viewpoints. For feature representation in re-identification, existing works usually use low-level descriptors which do not take full advantage of body structure information, resulting in low representation ability. %discrimination. To solve this problem, this paper proposes the mid-level body-structure based feature representation (BSFR) which introduces body structure pyramid for codebook learning and feature pooling in the vertical direction of human body. Besides, varying viewpoints in the horizontal direction of human body usually causes the data missing problem, i.e.i.e., the appearances obtained in different orientations of the identical person could vary significantly. To address this problem, the orientation driven bag of appearances (ODBoA) is proposed to utilize person orientation information extracted by orientation estimation technic. To properly evaluate the proposed approach, we introduce a new re-identification dataset (Market-1203) based on the Market-1501 dataset and propose a new re-identification dataset (PKU-Reid). Both datasets contain multiple images captured in different body orientations for each person. Experimental results on three public datasets and two proposed datasets demonstrate the superiority of the proposed approach, indicating the effectiveness of body structure and orientation information for improving re-identification performance.Comment: 13 pages, 15 figures, 3 tables, submitted to IEEE Transactions on Circuits and Systems for Video Technolog
    corecore