46 research outputs found

    Smoothness Analysis of Adversarial Training

    Full text link
    Deep neural networks are vulnerable to adversarial attacks. Recent studies about adversarial robustness focus on the loss landscape in the parameter space since it is related to optimization and generalization performance. These studies conclude that the difficulty of adversarial training is caused by the non-smoothness of the loss function: i.e., its gradient is not Lipschitz continuous. However, this analysis ignores the dependence of adversarial attacks on model parameters. Since adversarial attacks are optimized for models, they should depend on the parameters. Considering this dependence, we analyze the smoothness of the loss function of adversarial training using the optimal attacks for the model parameter in more detail. We reveal that the constraint of adversarial attacks is one cause of the non-smoothness and that the smoothness depends on the types of the constraints. Specifically, the L∞L_\infty constraint can cause non-smoothness more than the L2L_2 constraint. Moreover, our analysis implies that if we flatten the loss function with respect to input data, the Lipschitz constant of the gradient of adversarial loss tends to increase. To address the non-smoothness, we show that EntropySGD smoothens the non-smooth loss and improves the performance of adversarial training.Comment: 22 pages, 7 figures. In V3, we add the results of EntropySGD for adversarial trainin

    Adversarial Neon Beam: Robust Physical-World Adversarial Attack to DNNs

    Full text link
    In the physical world, light affects the performance of deep neural networks. Nowadays, many products based on deep neural network have been put into daily life. There are few researches on the effect of light on the performance of deep neural network models. However, the adversarial perturbations generated by light may have extremely dangerous effects on these systems. In this work, we propose an attack method called adversarial neon beam (AdvNB), which can execute the physical attack by obtaining the physical parameters of adversarial neon beams with very few queries. Experiments show that our algorithm can achieve advanced attack effect in both digital test and physical test. In the digital environment, 99.3% attack success rate was achieved, and in the physical environment, 100% attack success rate was achieved. Compared with the most advanced physical attack methods, our method can achieve better physical perturbation concealment. In addition, by analyzing the experimental data, we reveal some new phenomena brought about by the adversarial neon beam attack

    Adversarial Defense via Neural Oscillation inspired Gradient Masking

    Full text link
    Spiking neural networks (SNNs) attract great attention due to their low power consumption, low latency, and biological plausibility. As they are widely deployed in neuromorphic devices for low-power brain-inspired computing, security issues become increasingly important. However, compared to deep neural networks (DNNs), SNNs currently lack specifically designed defense methods against adversarial attacks. Inspired by neural membrane potential oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that changes model's gradients by replacing the form of oscillation, which hides the original training gradients and confuses the attacker into using gradients of 'fake' neurons to generate invalid adversarial samples. Our experiments suggest that the proposed defense method can effectively resist both single-step and iterative attacks with comparable defense effectiveness and much less computational costs than adversarial training methods on DNNs. To the best of our knowledge, this is the first work that establishes adversarial defense through masking surrogate gradients on SNNs
    corecore