5 research outputs found

    Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR

    Get PDF
    Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometricā€“optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg haāˆ’1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~10 Mg haāˆ’1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail

    Changes in Tall Shrub Abundance on the North Slope of Alaska, 2000-2010

    Get PDF
    The observed greening of Arctic vegetation and the expansion of shrubs in the last few decades has likely had profound implications for the tundra ecosystem, including feedbacks to climate. Uncertainty surrounding the magnitude, direction, and implications of this vegetation shift calls for monitoring of vegetation structural parameters, such as fractional cover of shrubs. Due to the extent of the North Slope of Alaska and its extreme environments, remote sensing may be the most suitable tool to produce wall-to-wall fractional shrub cover maps for the entire region, however, most regional maps have relied on vegetation indices or needed many years worth of data to cover the whole region. Here, a new mapping approach is presented that uses satellite imagery from the Multi-angle Imaging SpectroRadiometer (MISR) sensor and some landscape variables to predict tall shrub (\u3e 0.5 m) cover with the ultimate goal of evaluating temporal changes in tall shrub fractional cover during the period of 2010-2000. Specifically, we: 1) undertook two field surveys in the North Slope of Alaska to obtain estimates of tall shrub cover, canopy height, crown radius, and total number of shrubs at 26 sites (250 m Ɨ 250 m each); 2) evaluated the ability of the semi-automated image interpretation algorithm CANAPI - CANopy Analysis from Panchromatic Imagery, to derive structural data for tall (\u3e 0.5 m) shrubs in the Arctic; 3) constructed a robust reference database with estimates of shrub structural parameters; 4) trained and validated the boosted regression tree model to predict tall shrub fractional cover from moderate resolution imagery; 5) created the 2000 and the 2010 tall shrub fractional cover map for the North Slope of Alaska; and 6) evaluated the changes in shrub abundance during the period 2010-2000 in the North Slope of Alaska. Results from the field surveys suggested that tall shrub fractional cover was less than 5% at 250 m scales. The evaluation of the CANAPI algorithm showed that CANAPI could successfully retrieve fractional cover (R2 = 0.83, P \u3c 0.001), mean crown radius (R2 = 0.81, P \u3c 0.001), and total number of shrubs (R2 = 0.54, P \u3c 0.001) from very-high resolution imagery. As a result, a robust reference database was constructed with estimates of tall shrub fractional cover, canopy radius, and total number of shrubs for 1,039 sites across the domain of the North Slope. After the training and validation of the Boosted Regression Tree (BRT), the best model used 14 predictor variables and explained 52% of the variation in the response variable, fractional cover. The red reflectance, slope, nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted weight of determination, and isotropic scattering kernel were the variables more often used to generate the regression trees, and therefore they contributed the most to the model. The trained BRT model was used to construct the tall shrub fractional cover map for the year 2000 and 2010 using moderate resolution imagery. The maps revealed that cover ranged from 0.00 to 0.21 and about 75% of the sites had a fractional cover less than 0.013. High cover values were predicted along floodplains, creeks, and sloped terrain. The 2000 MISR-derived fractional cover map presented here outperformed the 2000 Landsat-derived tall shrub fractional cover map when compared to the robust validation data set (R2= 0.38, Root Mean Square Error (RMSE) = 0.08). Temporal comparisons of tall shrub abundance in the MISR-derived maps suggested that shrubs expanded during the period 2000-2010. The extent of the area that unequivocally experienced a robust change in tall shrub cover was less than 1 % (1,487 km2) of the total area of the North Slope of Alaska (213,090 km2). It is possible that tall shrubs may have expanded throughout a larger area but there is insufficient precision in the MISR-based estimates to make an unequivocal determination. Nevertheless, it seems that there was a positive trend toward an increase in shrub cover considering that 95% of the locations that had a robust change saw an increase. The tall shrub cover expansion rate varied between 0.006 yr-1 and 0.017 yr-1, being higher along the forest-tundra ecotone, north of the Brooks Range. More research is necessary to determine if the increase in cover corresponded to the advance of the tree line, or to the expansion of the tall shrubs, or both

    The development of a temporal-BRDF model-based approach to change detection, an application to the identification and delineation of fire affected areas.

    Get PDF
    Although large quantities of southern Africa burn every year, minimal information is available relating to the fire regimes of this area. This study develops a new, generic approach to change detection, applicable to the identification of land cover change from high temporal and moderate spatial resolution satellite data. Traditional change detection techniques have several key limitations which are identified and addressed in this work. In particular these approaches fail to account for directional effects in the remote sensing signal introduced by variations in the solar and sensing geometry, and are sensitive to underlying phenological changes in the surface as well as noise in the data due to cloud or atmospheric contamination. This research develops a bi-directional, model-based change detection algorithm. An empirical temporal component is incorporated into a semi-empirical linear BRDF model. This may be fitted to a long time series of reflectance with less sensitivity to the presence of underlying phenological change. Outliers are identified based on an estimation of noise in the data and the calculation of uncertainty in the model parameters and are removed from the sequence. A "step function kernel" is incorporated into the formulation in order to detect explicitly sudden step-like changes in the surface reflectance induced by burning. The change detection model is applied to the problem of locating and mapping fire affected areas from daily moderate spatial resolution satellite data, and an indicator of burn severity is introduced. Monthly burned area datasets for a 2400km by 1200km area of southern Africa detailing the day and severity of burning are created for a five year period (2000-2004). These data are analysed and the fire regimes of southern African ecosystems during this time are characterised. The results highlight the extent of the burning which is taking place within southern Africa, with between 27-32% of the study area burning during each of the five years of observation. Higher fire frequencies are exhibited by savanna and grassland ecosystems, while more dense vegetation types such as shrublands and deciduous broadleaf forests burn less frequently. In addition the areas which burn more frequently do so with a greater severity, with a positive relationship identified between the frequency and the severity of burning

    Improved estimation of surface biophysical parameters through inversion of linear BRDF models

    Get PDF
    corecore