49,116 research outputs found

    Sparse image reconstruction on the sphere: implications of a new sampling theorem

    Full text link
    We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation (TV) inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high-resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.Comment: 11 pages, 5 figure

    Image gathering and coding for digital restoration: Information efficiency and visual quality

    Get PDF
    Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement

    Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond

    Full text link
    The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV center's spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.Comment: 21 pages, 7 figure

    Adaptive Quantization Matrices for HD and UHD Display Resolutions in Scalable HEVC

    Get PDF
    HEVC contains an option to enable custom quantization matrices, which are designed based on the Human Visual System and a 2D Contrast Sensitivity Function. Visual Display Units, capable of displaying video data at High Definition and Ultra HD display resolutions, are frequently utilized on a global scale. Video compression artifacts that are present due to high levels of quantization, which are typically inconspicuous in low display resolution environments, are clearly visible on HD and UHD video data and VDUs. The default QM technique in HEVC does not take into account the video data resolution, nor does it take into consideration the associated display resolution of a VDU to determine the appropriate levels of quantization required to reduce unwanted video compression artifacts. Based on this fact, we propose a novel, adaptive quantization matrix technique for the HEVC standard, including Scalable HEVC. Our technique, which is based on a refinement of the current HVS-CSF QM approach in HEVC, takes into consideration the display resolution of the target VDU for the purpose of minimizing video compression artifacts. In SHVC SHM 9.0, and compared with anchors, the proposed technique yields important quality and coding improvements for the Random Access configuration, with a maximum of 56.5% luma BD-Rate reductions in the enhancement layer. Furthermore, compared with the default QMs and the Sony QMs, our method yields encoding time reductions of 0.75% and 1.19%, respectively.Comment: Data Compression Conference 201

    Computer image generation: Reconfigurability as a strategy in high fidelity space applications

    Get PDF
    The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system
    corecore