518 research outputs found

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    A critical-path based iterated local search for the green permutation flowshop problem

    Get PDF
    The permutation flowshop scheduling problem is a widely studied combinatorial optimization problem with several real-world applications. In this paper we address a green variant of the problem with controllable processing times and two objective functions: one related to the service level of the factory (makespan) and another one related to the total cost or the total energy/carbon consumption. For this problem we propose a novel Critical-Path based Iterated Local Search. This metaheuristic incorporates several theoretical results to accelerate the search of solutions in the intensification phase. The proposed algorithm has been compared on an extensive benchmark with the most promising algorithms in the literature. The computational results show the excellent performance of the proposal.Ministerio de Ciencia e Innovación PID2019-108756RB-I00Junta de Andalucía US-126451

    A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime

    Full text link
    [EN] In recent years, a large number of heuristics have been proposed for the minimization of the total or mean flowtime/completion time of the well-known permutation flowshop scheduling problem. Although some literature reviews and comparisons have been made, they do not include the latest available heuristics and results are hard to compare as no common benchmarks and computing platforms have been employed. Furthermore, existing partial comparisons lack the application of powerful statistical tools. The result is that it is not clear which heuristics, especially among the recent ones, are the best. This paper presents a comprehensive review and computational evaluation as well as a statistical assessment of 22 existing heuristics. From the knowledge obtained after such a detailed comparison, five new heuristics are presented. Careful designs of experiments and analyses of variance (ANOVA) techniques are applied to guarantee sound conclusions. The comparison results identify the best existing methods and show that the five newly presented heuristics are competitive or better than the best performing ones in the literature for the permutation flowshop problem with the total completion time criterionThis research is partially supported by National Science Foundation of China (60874075, 61174187), and Science Foundation of Shandong Province, China (BS2010DX005), and Postdoctoral Science Foundation of China (20100480897). Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Pan, Q.; Ruiz García, R. (2013). A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Computers and Operations Research. 40(1):117-128. https://doi.org/10.1016/j.cor.2012.05.018S11712840

    Heuristics and metaheuristics for heavily constrained hybrid flowshop problems

    Full text link
    Due to the current trends in business as the necessity to have a large catalogue of products, orders that increase in frequency but not in size, globalisation and a market that is increasingly competitive, the production sector faces an ever harder economical environment. All this raises the need for production scheduling with maximum efficiency and effectiveness. The first scientific publications on production scheduling appeared more than half a century ago. However, many authors have recognised a gap between the literature and the industrial problems. Most of the research concentrates on optimisation problems that are actually a very simplified version of reality. This allows for the use of sophisticated approaches and guarantees in many cases that optimal solutions are obtained. Yet, the exclusion of real-world restrictions harms the applicability of those methods. What the industry needs are systems for optimised production scheduling that adjust exactly to the conditions in the production plant and that generates good solutions in very little time. This is exactly the objective in this thesis, that is, to treat more realistic scheduling problems and to help closing the gap between the literature and practice. The considered scheduling problem is called the hybrid flowshop problem, which consists in a set of jobs that flow through a number of production stages. At each of the stages, one of the machines that belong to the stage is visited. A series of restriction is considered that include the possibility to skip stages, non-eligible machines, precedence constraints, positive and negative time lags and sequence dependent setup times. In the literature, such a large number of restrictions has not been considered simultaneously before. Briefly, in this thesis a very realistic production scheduling problem is studied. Various optimisation methods are presented for the described scheduling problem. A mixed integer programming model is proposed, in order to obtaiUrlings ., T. (2010). Heuristics and metaheuristics for heavily constrained hybrid flowshop problems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8439Palanci

    Energy-Aware Multi-Objective Job Shop Scheduling Optimization with Metaheuristics in Manufacturing Industries: A Critical Survey, Results, and Perspectives

    Get PDF
    In recent years, the application of artificial intelligence has been revolutionizing the manufacturing industry, becoming one of the key pillars of what has been called Industry 4.0. In this context, we focus on the job shop scheduling problem (JSP), which aims at productions orders to be carried out, but considering the reduction of energy consumption as a key objective to fulfill. Finding the best combination of machines and jobs to be performed is not a trivial problem and becomes even more involved when several objectives are taken into account. Among them, the improvement of energy savings may conflict with other objectives, such as the minimization of the makespan. In this paper, we provide an in-depth review of the existing literature on multi-objective job shop scheduling optimization with metaheuristics, in which one of the objectives is the minimization of energy consumption. We systematically reviewed and critically analyzed the most relevant features of both problem formulations and algorithms to solve them effectively. The manuscript also informs with empirical results the main findings of our bibliographic critique with a performance comparison among representative multi-objective evolutionary solvers applied to a diversity of synthetic test instances. The ultimate goal of this article is to carry out a critical analysis, finding good practices and opportunities for further improvement that stem from current knowledge in this vibrant research area.Javier Del Ser acknowledges funding support from the Basque Government (consolidated research group MATHMODE, Ref. IT1294-19). Antonio J. Nebro is supported by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and the Andalusian PAIDI program with Grant P18-RT-2799

    A beam-search-based constructive heuristic for the PFSP to minimise total flowtime

    Get PDF
    In this paper we present a beam-search-based constructive heuristic to solve the permutation flowshop scheduling problem with total flowtime minimisation as objective. This well-known problem is NP-hard, and several heuristics have been developed in the literature. The proposed algorithm is inspired in the logic of the beam search, although it remains a fast constructive heuristic. The results obtained by the proposed algorithm outperform those obtained by other constructive heuristics in the literature for the problem, thus modifying substantially the state-of-the-art of efficient approximate procedures for the problem. In addition, the proposed algorithm even outperforms two of the best metaheuristics for many instances of the problem, using much lesser computation effort. The excellent performance of the proposal is also proved by the fact that the new heuristic found new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-
    corecore