3,074 research outputs found

    information

    Get PDF
    In this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants were regulated through 2 alternative procedures, i.e. max min-based and cosine amplitude-based diversity-evaluating procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization performance

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2

    Fast multi-swarm optimization for dynamic optimization problems

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn the real world, many applications are non-stationary optimization problems. This requires that the optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a multi-swarm algorithm based on fast particle swarm optimization for dynamic optimization problems. The algorithm employs a mechanism to track multiple peaks by preventing overcrowding at a peak and a fast particle swarm optimization algorithm as a local search method to find the near optimal solutions in a local promising region in the search space. The moving peaks benchmark function is used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for dynamic optimization problems
    corecore