5,668 research outputs found
Relay Selection with Network Coding in Two-Way Relay Channels
In this paper, we consider the design of joint network coding (NC)and relay
selection (RS) in two-way relay channels. In the proposed schemes, two users
first sequentially broadcast their respective information to all the relays. We
propose two RS schemes, a single relay selection with NC and a dual relay
selection with NC. For both schemes, the selected relay(s) perform NC on the
received signals sent from the two users and forward them to both users. The
proposed schemes are analyzed and the exact bit error rate (BER) expressions
are derived and verified through Monte Carlo simulations. It is shown that the
dual relay selection with NC outperforms other considered relay selection
schemes in two-way relay channels. The results also reveal that the proposed NC
relay selection schemes provide a selection gain compared to a NC scheme with
no relay selection, and a network coding gain relative to a conventional relay
selection scheme with no NC.Comment: 11 pages, 5 figure
Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks
Conventional cellular wireless networks were designed with the purpose of
providing high throughput for the user and high capacity for the service
provider, without any provisions of energy efficiency. As a result, these
networks have an enormous Carbon footprint. In this paper, we describe the
sources of the inefficiencies in such networks. First we present results of the
studies on how much Carbon footprint such networks generate. We also discuss
how much more mobile traffic is expected to increase so that this Carbon
footprint will even increase tremendously more. We then discuss specific
sources of inefficiency and potential sources of improvement at the physical
layer as well as at higher layers of the communication protocol hierarchy. In
particular, considering that most of the energy inefficiency in cellular
wireless networks is at the base stations, we discuss multi-tier networks and
point to the potential of exploiting mobility patterns in order to use base
station energy judiciously. We then investigate potential methods to reduce
this inefficiency and quantify their individual contributions. By a
consideration of the combination of all potential gains, we conclude that an
improvement in energy consumption in cellular wireless networks by two orders
of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
Green Cellular Networks: A Survey, Some Research Issues and Challenges
Energy efficiency in cellular networks is a growing concern for cellular
operators to not only maintain profitability, but also to reduce the overall
environment effects. This emerging trend of achieving energy efficiency in
cellular networks is motivating the standardization authorities and network
operators to continuously explore future technologies in order to bring
improvements in the entire network infrastructure. In this article, we present
a brief survey of methods to improve the power efficiency of cellular networks,
explore some research issues and challenges and suggest some techniques to
enable an energy efficient or "green" cellular network. Since base stations
consume a maximum portion of the total energy used in a cellular system, we
will first provide a comprehensive survey on techniques to obtain energy
savings in base stations. Next, we discuss how heterogeneous network deployment
based on micro, pico and femto-cells can be used to achieve this goal. Since
cognitive radio and cooperative relaying are undisputed future technologies in
this regard, we propose a research vision to make these technologies more
energy efficient. Lastly, we explore some broader perspectives in realizing a
"green" cellular network technologyComment: 16 pages, 5 figures, 2 table
- …
