265 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    A Cloud Robotics Solution to Improve Social Assistive Robots for Active and Healthy Aging

    Get PDF
    Technological innovation in robotics and ICT represents an effective solution to tackle the challenge of providing social sustainable care services for the ageing population. The recent introduction of cloud technologies is opening new opportunities for the provisioning of advanced robotic services based on the cooperation of a number of connected robots, smart environments and devices improved by the huge cloud computational and storage capability. In this context, this paper aims to investigate and assess the potentialities of a cloud robotic system for the provisioning of assistive services for the promotion of active and healthy ageing. The system comprised two different smart environments, located in Italy and Sweden, where a service robot is connected to a cloud platform for the provisioning of localization based services to the users. The cloud robotic services were tested in the two realistic environments to assess the general feasibility of the solution and demonstrate the ability to provide assistive location based services in a multiple environment framework. The results confirmed the validity of the solution but also suggested a deeper investigation on the dependability of the communication technologies adopted in such kind of systems

    Design and implementation of advanced sensor systems for smart robotic wheelchairs: A review

    Get PDF
    Smart robotic wheelchairs have emerged as promising assistive devices to enhance mobility and independence for individuals with mobility impairments. The successful integration of advanced sensor systems plays a critical role in improving the functionality and safety of these wheelchairs. This paper presents a comprehensive review of the design and implementation of advanced sensor systems for smart robotic wheelchairs. Through an extensive literature review, the limitations of existing sensor technologies are identified, and the potential of advanced sensors is explored. Vision-based sensors, range and proximity sensors, force and pressure sensors, inertial sensors, and environmental sensors are discussed in detail. Furthermore, this review highlights the design considerations, hardware components, software development, and calibration procedures involved in implementing advanced sensor systems. Evaluation and performance analysis metrics are discussed to assess the effectiveness of the sensor systems. The research findings indicate that advanced sensor systems have the potential to significantly enhance the functionality and safety of smart robotic wheelchairs. However, challenges such as sensor integration, data fusion, and user feedback must be addressed. This review paper concludes by discussing the implications of advanced sensor systems in improving wheelchair functionality and user experience, and proposes future directions for research in this domain

    Machine learning and mixed reality for smart aviation: applications and challenges

    Get PDF
    The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more sophisticated, the aviation industry must keep up with the changing trends. While some airlines have made investments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous systems, self-service systems, and data visualization systems are being researched to enhance passenger experience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency

    Estudio y evaluaciĂłn de plataformas de distribuciĂłn de cĂłmputo intensivo sobre sistemas externos para sistemas empotrados.

    Get PDF
    Falta palabras claveNowadays, the capabilities of current embedded systems are constantly increasing, having a wide range of applications. However, there are a plethora of intensive computing tasks that, because of their hardware limitations, are unable to perform successfully. Moreover, there are innumerable tasks with strict deadlines to meet (e.g. Real Time Systems). Because of that, the use of external platforms with sufficient computing power is becoming widespread, especially thanks to the advent of Cloud Computing in recent years. Its use for knowledge sharing and information storage has been demonstrated innumerable times in the literature. However, its core properties, such as dynamic scalability, energy efficiency, infinite resources... amongst others, also make it the perfect candidate for computation off-loading. In this sense, this thesis demonstrates this fact in applying Cloud Computing in the area of Robotics (Cloud Robotics). This is done by building a 3D Point Cloud Extraction Platform, where robots can offload the complex stereo vision task of obtaining a 3D Point Cloud (3DPC) from Stereo Frames. In addition to this, the platform was applied to a typical robotics application: a Navigation Assistant. Using this case, the core challenges of computation offloading were thoroughly analyzed: the role of communication technologies (with special focus on 802.11ac), the role of offloading models, how to overcome the problem of communication delays by using predictive time corrections, until what extent offloading is a better choice compared to processing on board... etc. Furthermore, real navigation tests were performed, showing that better navigation results are obtained when using computation offloading. This experience was a starting point for the final research of this thesis: an extension of Amdahl’s Law for Cloud Computing. This will provide a better understanding of Computation Offloading’s inherent factors, especially focused on time and energy speedups. In addition to this, it helps to make some predictions regarding the future of Cloud Computing and computation offloading

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Localization and Mapping for Self-Driving Vehicles:A Survey

    Get PDF
    The upsurge of autonomous vehicles in the automobile industry will lead to better driving experiences while also enabling the users to solve challenging navigation problems. Reaching such capabilities will require significant technological attention and the flawless execution of various complex tasks, one of which is ensuring robust localization and mapping. Recent surveys have not provided a meaningful and comprehensive description of the current approaches in this field. Accordingly, this review is intended to provide adequate coverage of the problems affecting autonomous vehicles in this area, by examining the most recent methods for mapping and localization as well as related feature extraction and data security problems. First, a discussion of the contemporary methods of extracting relevant features from equipped sensors and their categorization as semantic, non-semantic, and deep learning methods is presented. We conclude that representativeness, low cost, and accessibility are crucial constraints in the choice of the methods to be adopted for localization and mapping tasks. Second, the survey focuses on methods to build a vehicle’s environment map, considering both the commercial and the academic solutions available. The analysis proposes a difference between two types of environment, known and unknown, and develops solutions in each case. Third, the survey explores different approaches to vehicles’ localization and also classifies them according to their mathematical characteristics and priorities. Each section concludes by presenting the related challenges and some future directions. The article also highlights the security problems likely to be encountered in self-driving vehicles, with an assessment of possible defense mechanisms that could prevent security attacks in vehicles. Finally, the article ends with a debate on the potential impacts of autonomous driving, spanning energy consumption and emission reduction, sound and light pollution, integration into smart cities, infrastructure optimization, and software refinement. This thorough investigation aims to foster a comprehensive understanding of the diverse implications of autonomous driving across various domains

    An overview of machine learning and 5G for people with disabilities

    Get PDF
    Currently, over a billion people, including children (or about 15% of the world’s population), are estimated to be living with disability, and this figure is going to increase to beyond two billion by 2050. People with disabilities generally experience poorer levels of health, fewer achievements in education, fewer economic opportunities, and higher rates of poverty. Artificial intelligence and 5G can make major contributions towards the assistance of people with disabilities, so they can achieve a good quality of life. In this paper, an overview of machine learning and 5G for people with disabilities is provided. For this purpose, the proposed 5G network slicing architecture for disabled people is introduced. Different application scenarios and their main benefits are considered to illustrate the interaction of machine learning and 5G. Critical challenges have been identified and addressed.This work has been supported by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/ AEI /10.13039/501100011033.Postprint (published version

    Towards a Legal end Ethical Framework for Personal Care Robots. Analysis of Person Carrier, Physical Assistant and Mobile Servant Robots.

    Get PDF
    Technology is rapidly developing, and regulators and robot creators inevitably have to come to terms with new and unexpected scenarios. A thorough analysis of this new and continuosuly evolving reality could be useful to better understand the current situation and pave the way to the future creation of a legal and ethical framework. This is clearly a wide and complex goal, considering the variety of new technologies available today and those under development. Therefore, this thesis focuses on the evaluation of the impacts of personal care robots. In particular, it analyzes how roboticists adjust their creations to the existing regulatory framework for legal compliance purposes. By carrying out an impact assessment analysis, existing regulatory gaps and lack of regulatory clarity can be highlighted. These gaps should of course be considered further on by lawmakers for a future legal framework for personal care robot. This assessment should be made first against regulations. If the creators of the robot do not encounter any limitations, they can then proceed with its development. On the contrary, if there are some limitations, robot creators will either (1) adjust the robot to comply with the existing regulatory framework; (2) start a negotiation with the regulators to change the law; or (3) carry out the original plan and risk to be non-compliant. The regulator can discuss existing (or lacking) regulations with robot developers and give a legal response accordingly. In an ideal world, robots are clear of impacts and therefore threats can be responded in terms of prevention and opportunities in form of facilitation. In reality, the impacts of robots are often uncertain and less clear, especially when they are inserted in care applications. Therefore, regulators will have to address uncertain risks, ambiguous impacts and yet unkown effects
    • …
    corecore