299 research outputs found

    Separable Reversible Data Hiding in Encrypted Images Based on Two-Dimensional Histogram Modification

    Get PDF
    An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme

    A Multistage High Capacity Reversible Data Hiding Technique Without Overhead Communication

    Get PDF
    Reversible Data Hiding(RDH) has been extensively investigated, recently, due to its numerous applications in the field of defence, medical, law enforcement and image authentication. However, most of RDH techniques suffer from low secret data hiding capacity and communication overhead. For this, multistage high-capacity reversible data hiding technique without overhead is proposed in this manuscript. Proposed reversible data hiding approach exploits histogram peaks for embedding the secret data along with overhead bits both in plain and encrypted domain. First, marked image is obtained by embedding secret data in the plain domain which is further processed using affine cipher maintaining correlation among the pixels. In second stage, overhead bits are embedded in the encrypted marked image. High embedding capacity is achieved through exploiting histogram peak for embedding multiple bits of secret data. Proposed approach is experimentally validated on different datasets and results are compared with the state-of-the-art techniques over different images

    A Survey on Reversible Image Data Hiding Using the Hierarchical Block Embedding Technique

    Get PDF
    The use of graphics for data concealment has significantly advanced the fields of secure communication and identity verification. Reversible data hiding (RDH) involves hiding data within host media, such as images, while allowing for the recovery of the original cover. Various RDH approaches have been developed, including difference expansion, interpolation techniques, prediction, and histogram modification. However, these methods were primarily applied to plain photos. This study introduces a novel reversible image transformation technique called Block Hierarchical Substitution (BHS). BHS enhances the quality of encrypted images and enables lossless restoration of the secret image with a low Peak Signal-to-Noise Ratio (PSNR). The cover image is divided into non-overlapping blocks, and the pixel values within each block are encrypted using the modulo function. This ensures that the linear prediction difference in the block remains consistent before and after encryption, enabling independent data extraction without picture decryption. In order to address the challenges associated with secure multimedia data processing, such as data encryption during transmission and storage, this survey investigates the specific issues related to reversible data hiding in encrypted images (RDHEI). Our proposed solution aims to enhance security (low Mean Squared Error) and improve the PSNR value by applying the method to encrypted images

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    Implementation of Reversible Data Hiding Using Suitable Wavelet Transform For Controlled Contrast Enhancement

    Get PDF
    Data Hiding is important for secrete communication and it is also essential to keep the data hidden to be received by the intended recipient only. The conventional Reversible Data Hiding (RDH) algorithms pursue high Peak-Signal-to-Noise-Ratio (PSNR) at certain amount of embedding bits. Considering an importance of improvement in image visual quality than keeping high PSNR, a novel RDH scheme utilizing contrast enhancement to replace the PSNR was presented with the help of Integer Wavelet Transform (IWT). In proposed work, the identification of suitable transform from different wavelet families is planned to enhance the security of data by encrypting it and embedding more bits with the original image to generate stego image. The obtained stego image will be transmitted to the other end, where the receiver will extract the transmitted secrete data and original cover image from stego image using required keys. It will use a proper transformation for the purpose of Controlled Contrast Enhancement (CCE) to achieve the intended RDH so that the amount of embedding data bits and visual perception will be enhanced. The difference of the transmitted original image and restored original image is minor, which is almost invisible for human eyes though more bits are embedded with the original image. The performance parameters are also calculated
    • …
    corecore