13,916 research outputs found

    Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties

    Full text link
    Model-based approaches to 3D hand tracking have been shown to perform well in a wide range of scenarios. However, they require initialisation and cannot recover easily from tracking failures that occur due to fast hand motions. Data-driven approaches, on the other hand, can quickly deliver a solution, but the results often suffer from lower accuracy or missing anatomical validity compared to those obtained from model-based approaches. In this work we propose a hybrid approach for hand pose estimation from a single depth image. First, a learned regressor is employed to deliver multiple initial hypotheses for the 3D position of each hand joint. Subsequently, the kinematic parameters of a 3D hand model are found by deliberately exploiting the inherent uncertainty of the inferred joint proposals. This way, the method provides anatomically valid and accurate solutions without requiring manual initialisation or suffering from track losses. Quantitative results on several standard datasets demonstrate that the proposed method outperforms state-of-the-art representatives of the model-based, data-driven and hybrid paradigms.Comment: BMVC 2015 (oral); see also http://lrs.icg.tugraz.at/research/hybridhape

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Full text link
    State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.Comment: Extended tech repor

    S-OHEM: Stratified Online Hard Example Mining for Object Detection

    Full text link
    One of the major challenges in object detection is to propose detectors with highly accurate localization of objects. The online sampling of high-loss region proposals (hard examples) uses the multitask loss with equal weight settings across all loss types (e.g, classification and localization, rigid and non-rigid categories) and ignores the influence of different loss distributions throughout the training process, which we find essential to the training efficacy. In this paper, we present the Stratified Online Hard Example Mining (S-OHEM) algorithm for training higher efficiency and accuracy detectors. S-OHEM exploits OHEM with stratified sampling, a widely-adopted sampling technique, to choose the training examples according to this influence during hard example mining, and thus enhance the performance of object detectors. We show through systematic experiments that S-OHEM yields an average precision (AP) improvement of 0.5% on rigid categories of PASCAL VOC 2007 for both the IoU threshold of 0.6 and 0.7. For KITTI 2012, both results of the same metric are 1.6%. Regarding the mean average precision (mAP), a relative increase of 0.3% and 0.5% (1% and 0.5%) is observed for VOC07 (KITTI12) using the same set of IoU threshold. Also, S-OHEM is easy to integrate with existing region-based detectors and is capable of acting with post-recognition level regressors.Comment: 9 pages, 3 figures, accepted by CCCV 201

    Deformable Part-based Fully Convolutional Network for Object Detection

    Full text link
    Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultaneously brings more invariance for classification and geometric information to refine localization. DP-FCN is composed of three main modules: a Fully Convolutional Network to efficiently maintain spatial resolution, a deformable part-based RoI pooling layer to optimize positions of parts and build invariance, and a deformation-aware localization module explicitly exploiting displacements of parts to improve accuracy of bounding box regression. We experimentally validate our model and show significant gains. DP-FCN achieves state-of-the-art performances of 83.1% and 80.9% on PASCAL VOC 2007 and 2012 with VOC data only.Comment: Accepted to BMVC 2017 (oral
    • …
    corecore