737 research outputs found

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    Improving Localization Accuracy and Packet Scheduling in Underwater Sensor Networks

    Get PDF
    One of the vital issues for wireless sensing element networks is increasing the network time period. Bunch is associate economical technique for prolonging the time period of wireless sensing element networks. This thesis proposes a multihop bunch formula (MHC-multihop clustering algorithm) for energy saving in wireless sensing element networks. MHC selects the clusterheads consistent with theto parameters the remaining energy and node degree. Additionally cluster heads choose their members consistent with the two parameters of sensing element the remaining energy and therefore the distance to its cluster head. MHC is finished in 3 phases quickly. Simulation results show that the planned formula will increase the network time period over 16 % compared of the LEACH(Low-energy adaptive clustering hierarchy) protoco

    ECS: Efficient Communication Scheduling for Underwater Sensor Networks

    Get PDF
    TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols

    Transmission Scheduling Technique for A Propagation transfer using Sensing Protocol Under water Acoustic Wireless Sensor Networks.

    Get PDF
     As detector nodes square measure typically powered devices, the vital aspects to face concern the way to cut back the energy consumption of nodes, so the network lifespan may be extended to cheap times. Mobile underwater networks with acoustic communications square measure faced with many distinctive challenges like high transmission power utilization, giant propagation delay and node quality. In which Protocol multichip wireless network that uses multiple channel and dynamic channel choice technique. The comparison is conceded out by means that of analytical models, that square measure wont to confine the activities of a node that acts in line with either thought-about specifically for the underwater acoustic surroundings. The delay-aware opportunist transmission planning rule has been principally designed for underwater mobile detector networks. It uses passively obtained native info to reinforce the probabilities of synchronic transmissions whereas reducing collisions. Together with that, a straightforward performance mechanism that allows multiple outstanding packets at the sender facet, facultative multiple transmission sessions has been projected, that successively considerably improves the turnout. Every node learns neighboring node’s propagation delay info and their expected transmission schedules by passively overhearing packet transmissions through the institution of the new developed Macintosh protocol referred to as DOTS. This protocol principally aspires to attain higher channel utilization by harnessing each temporal and spatial recycle. The simulation results exemplify that DOTS provides truthful, medium access even with node quality. Thence this protocol additionally saves transmission energy by avoiding collisions whereas increasing turnout. It additionally achieves a turnout many times over that of the Slotted FAMA, whereas providing connected savings in energy. understanding that protocol is additional suited to given network setting and square measure expected to be of facilitate in planning novel protocol that presumably surmount presently out there solutions. Node monitor native underwater activities and report collected detector knowledge exploitation acoustic multi-hop routing to alternative mobile nodes for collaboration or just to a far off knowledge assortment center

    Information-Centric Design and Implementation for Underwater Acoustic Networks

    Get PDF
    Over the past decade, Underwater Acoustic Networks (UANs) have received extensive attention due to their vast benefits in academia and industry alike. However, due to the overall magnitude and harsh characteristics of underwater environments, standard wireless network techniques will fail because current technology and energy restrictions limit underwater devices due to delayed acoustic communications. To help manage these limitations we utilize Information-Centric Networking (ICN). More importantly, we look at ICN\u27s paradigm shift from traditional TCP/IP architecture to improve data handling and enhance network efficiency. By utilizing some of ICN\u27s techniques, such as data naming hierarchy, we can reevaluate each component of the network\u27s protocol stack given current underwater limitations to study the vast solutions and perspectives Information-Centric architectures can provide to UANs. First, we propose a routing strategy used to manage and route large data files in a network prone to high mobility. Therefore, due to UANs limited transmitting capability, we passively store sensed data and adaptively find the best path. Furthermore, we introduce adapted Named Data Networking (NDN) components to improve upon routing robustness and adaptiveness. Beyond naming data, we use tracers to assist in tracking stored data locations without using other excess means such as flooding. By collaborating tracer consistency with routing path awareness our protocol can adaptively manage faulty or high mobility nodes. Through this incorporation of varied NDN techniques, we are able to see notable improvements in routing efficiency. Second, we analyze the effects of Denial of Service (DoS) attacks on upper layer protocols. Since UANs are typically resource restrained, malicious users can advantageously create fake traffic to burden the already constrained network. While ICN techniques only provide basic DoS restriction we must expand our detection and restriction technique to meet the unique demands of UANs. To provide enhanced security against DoS we construct an algorithm to detect and restrict against these types of attacks while adapting to meet acoustic characteristics. To better extend this work we incorporate three node behavior techniques using probabilistic, adaptive, and predictive approaches for detecting malicious traits. Thirdly, to depict and test protocols in UANs, simulators are commonly used due to their accessibility and controlled testing aspects. For this section, we review Aqua-Sim, a discrete event-driven open-source underwater simulator. To enhance the core aspect of this simulator we first rewrite the current architecture and transition Aqua-Sim to the newest core simulator, NS-3. Following this, we clean up redundant features spread out between the various underwater layers. Additionally, we fully integrate the diverse NS-3 API within our simulator. By revamping previous code layout we are able to improve architecture modularity and child class expandability. New features are also introduced including localization and synchronization support, busy terminal problem support, multi-channel support, transmission range uncertainty modules, external noise generators, channel trace-driven support, security module, and an adapted NDN module. Additionally, we provide extended documentation to assist in user development. Simulation testing shows improved memory management and continuous validity in comparison to other underwater simulators and past iterations of Aqua-Sim
    • …
    corecore