2 research outputs found

    Improved Memoryless RNS Forward Converter Based on the Periodicity of Residues

    Get PDF
    The residue number system (RNS) is suitable for DSP architectures because of its ability to perform fast carry-free arithmetic. However, this advantage is over-shadowed by the complexity involved in the conversion of numbers between binary and RNS representations. Although the reverse conversion (RNS to binary) is more complex, the forward transformation is not simple either. Most forward converters make use of look-up tables (memory). Recently, a memoryless forward converter architecture for arbitrary moduli sets was proposed by Premkumar in 2002. In this paper, we present an extension to that architecture which results in 44% less hardware for parallel conversion and achieves 43% improvement in speed for serial conversions. It makes use of the periodicity properties of residues obtained using modular exponentiation

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations
    corecore