6,603 research outputs found

    On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes

    Full text link
    In this paper, we present an improved union bound on the Linear Programming (LP) decoding performance of the binary linear codes transmitted over an additive white Gaussian noise channels. The bounding technique is based on the second-order of Bonferroni-type inequality in probability theory, and it is minimized by Prim's minimum spanning tree algorithm. The bound calculation needs the fundamental cone generators of a given parity-check matrix rather than only their weight spectrum, but involves relatively low computational complexity. It is targeted to high-density parity-check codes, where the number of their generators is extremely large and these generators are spread densely in the Euclidean space. We explore the generator density and make a comparison between different parity-check matrix representations. That density effects on the improvement of the proposed bound over the conventional LP union bound. The paper also presents a complete pseudo-weight distribution of the fundamental cone generators for the BCH[31,21,5] code

    New Codes on Graphs Constructed by Connecting Spatially Coupled Chains

    Full text link
    A novel code construction based on spatially coupled low-density parity-check (SC-LDPC) codes is presented. The proposed code ensembles are described by protographs, comprised of several protograph-based chains characterizing individual SC-LDPC codes. We demonstrate that code ensembles obtained by connecting appropriately chosen SC-LDPC code chains at specific points have improved iterative decoding thresholds compared to those of single SC-LDPC coupled chains. In addition, it is shown that the improved decoding properties of the connected ensembles result in reduced decoding complexity required to achieve a specific bit error probability. The constructed ensembles are also asymptotically good, in the sense that the minimum distance grows linearly with the block length. Finally, we show that the improved asymptotic properties of the connected chain ensembles also translate into improved finite length performance.Comment: Submitted to IEEE Transactions on Information Theor

    Reliability Ratio Based Weighted Bit-Flipping Decoding for LDPC Codes

    No full text
    In this contribution, a novel reliability-ratio based weighted bit-flipping(RRWBF) algorithm is proposed for decoding Low Density Parity Check (LDPC) codes. The RRWBF algorithm proposed is benchmarked against the conventional weighted bit-flipping (WBF) algorithm [1] and the improved weighted bit-flipping (IWBF) algorithm [2]. More than 1 and 2 dB coding gain was achieved at an BER of 10-5 while invoking the RRWBF algorithm in comparison to the two benchmarking schemes, when communicating over an AWGN and an uncorrelated Rayleigh channel, respectively. Furthermore, the decoding complexity of the proposed RRWBF algorithm is maintained at the same level as that of the conventional WBF algorithm

    Link between Sum-Product and Gradient Projection Decoding of LDPC codes: an Intermediate Algorithm

    Get PDF
    Abstract-This paper investigates the connection between the classical Sum-Product (SP) decoder for Low Density Parity Check (LDPC) codes and the recently proposed Gradient Projection (GP) decoding scheme presented in [1]. A graphical model for GP is exhibited based on which we derive an intermediate algorithm which establishes a bridge between graphical based algorithms (SP and variants) and an optimization based algorithm (GP). A more practical decoding algorithm with improved performance and reduced complexity is also proposed. A complexity analysis is provided and performance are studied through Monte-Carlo simulations

    Spatially coupled generalized LDPC codes: asymptotic analysis and finite length scaling

    Get PDF
    Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.This work was supported in part by the National Science Foundation under Grant ECCS-1710920, Grant OIA-1757207, and Grant HRD-1914635; in part by the European Research Council (ERC) through the European Union's Horizon 2020 research and innovation program under Grant 714161; and in part by the Spanish Ministry of Science, Innovation and University under Grant TEC2016-78434-C3-3-R (AEI/FEDER, EU)
    corecore