4,241 research outputs found

    Optical Asymmetric Modulation for VLC Systems

    Get PDF
    The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity

    Spatial Coded Modulation

    Full text link
    In this paper, we propose a spatial coded modulation (SCM) scheme, which improves the accuracy of the active antenna detection by coding over the transmit antennas. Specifically, the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than its counterpart conventional spatial modulation. As the minimum Hamming distance increases, the reliability of the active antenna detection is directly enhanced, which in turn improves the demodulation of the modulated symbols and yields a better system reliability. In addition to the reliability, the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional spatial modulation technique. Moreover, the proposed SCM scheme strikes a balance between spectral efficiency and reliability by trading off the minimum Hamming distance with the number of available codewords. The optimal maximum likelihood detector is first formulated. Then, a low-complexity suboptimal detector is proposed to reduce the computational complexity, which has a two-step detection. Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios, i.e., Rayleigh, Rician, Nakagami-m, imperfect channel state information, and spatial correlation. Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance. Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.Comment: 30 pages, 17 figure

    Error performance analysis of n-ary Alamouti scheme with signal space diversity.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, a high-rate Alamouti scheme with Signal Space Diversity is developed to improve both the spectral efficiency and overall error performance in wireless communication links. This scheme uses high modulation techniques (M-ary quadrature amplitude modulation (M-QAM) and N-ary phase shift keying modulation (N-PSK)). Hence, this dissertation presents the mathematical models, design methodology and theoretical analysis of this high-rate Alamouti scheme with Signal Space Diversity.To improve spectral efficiency in multiple-input multiple-output (MIMO) wireless communications an N-ary Alamouti M-ary quadrature amplitude modulation (M-QAM) scheme is proposed in this thesis. The proposed N-ary Alamouti M-QAM Scheme uses N-ary phase shift keying modulation (NPSK) and M-QAM. The proposed scheme is investigated in Rayleigh fading channels with additive white Gaussian noise (AWGN). Based on union bound a theoretical average bit error probability (ABEP) of the system is formulated. The simulation results validate the theoretical ABEP. Both theoretical results and simulation results show that the proposed scheme improves spectral efficiency by 0.5 bit/sec/Hz in 2 × 4 16-PSK Alamouti 16-QAM system compared to the conventional Alamouti scheme (16-QAM). To further improve the error performance of the proposed N-ary Alamouti M-QAM Scheme an × N-ary Alamouti coded M-QAM scheme with signal space diversity (SSD) is also proposed in this thesis. In this thesis, based on the nearest neighbour (NN) approach a theoretical closed-form expression of the ABEP is further derived in Rayleigh fading channels. Simulation results also validate the theoretical ABEP for N-ary Alamouti M-QAM scheme with SSD. Both theoretical and simulation results further show that the 2 × 4 4-PSK Alamouti 256-QAM scheme with SSD can achieve 0.8 dB gain compared to the 2 × 4 4-PSK Alamouti 256-QAM scheme without SSD

    Quadrature Spatial Modulation Orthogonal Frequency Division Multiplexing

    Get PDF
    This paper investigates the application of quadrature spatial modulation (QSM) to orthogonal frequency division multiplexing (OFDM). In comparison to spatial modulation OFDM (SM-OFDM), the proposed QSM-OFDM achieves an enhanced spectral efficiency by decomposing the amplitude and/or phase modulated signal into its real and imaginary components as the transmitted symbols. The index/indices of the activated transmit antenna(s) are employed to convey additional information. These symbols are transmitted orthogonally to eliminate inter-channel interference with little trade-off in synchronization. The average bit error probability for QSM-OFDM and other schemes, including the SM-OFDM, conventional multiple-input multiple-output (MIMO-OFDM), maximal-ratio combining single-input multiple-output (MRC-OFDM), vertical Bell Laboratories layered space-time architecture (VBLAST-OFDM) and Alamouti-OFDM systems are demonstrated using Monte Carlo simulation. The expressions for the receiver computational complexities in terms of the number of real operations are further derived. QSM-OFDM yields a significant signal-to-noise ratio gain of  dB with little trade-off in computational complexity over SM-OFDM, while substantial gains greater than  dB are evident, when compared to other systems

    Enhanced performance and efficiency schemes for generalised spatial modulation.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2017.Abstract available in PDF file

    Index modulation for next generation wireless communications.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.A multicarrier index modulation technique in the form of quadrature spatial modulation (QSM) orthogonal frequency division multiplexing (QSM-OFDM) is proposed, in which transmit antenna indices are employed to transmit additional bits. Monte Carlo simulation results demonstrates a 5 dB gain in signal-to-noise ratio (SNR) over other OFDM schemes. Furthermore, an analysis of the receiver computational complexity is presented. A low-complexity near-ML detector for space-time block coded (STBC) spatial modulation (STBC-SM) with cyclic structure (STBC-CSM), which demonstrate near-ML error performance and yields significant reduction in computational complexity is proposed. In addition, the union-bound theoretical framework to quantify the average bit-error probability (ABEP) of STBC-CSM is formulated and validates the Monte Carlo simulation results. The application of media-based modulation (MBM), to STBC-SM and STBC-CSM employing radio frequency (RF) mirrors, in the form of MBSTBC-SM and MBSTBC-CSM is proposed to improve the error performance. Numerical results of the proposed schemes demonstrate significant improvement in error performance when compared with STBC-CSM and STBC-SM. In addition, the analytical framework of the union-bound on the ABEP of MBSTBC-SM and MBSTBC-CSM for the ML detector is formulated and agrees well with Monte Carlo simulations. Furthermore, a low-complexity near-ML detector for MBSTBC-SM and MBSTBC-CSM is proposed, and achieves a near-ML error performance. Monte Carlo simulation results demonstrate a trade-off between the error performance and the resolution of the detector that is employed. Finally, the application of MBM, an index modulated system to spatial modulation, in the form of spatial MBM (SMBM) is investigated. SMBM employs RF mirrors located around the transmit antenna units to create distinct channel paths to the receiver. This thesis presents an easy to evaluate theoretical bound for the error performance of SMBM, which is validated by Monte Carlo simulation results. Lastly, two low-complexity suboptimal mirror activation pattern (MAP) optimization techniques are proposed, which improve the error performance of SMBM significantly
    • …
    corecore