149,612 research outputs found

    The pp-Center Problem in Tree Networks Revisited

    Get PDF
    We present two improved algorithms for weighted discrete pp-center problem for tree networks with nn vertices. One of our proposed algorithms runs in O(nlogn+plog2nlog(n/p))O(n \log n + p \log^2 n \log(n/p)) time. For all values of pp, our algorithm thus runs as fast as or faster than the most efficient O(nlog2n)O(n\log^2 n) time algorithm obtained by applying Cole's speed-up technique [cole1987] to the algorithm due to Megiddo and Tamir [megiddo1983], which has remained unchallenged for nearly 30 years. Our other algorithm, which is more practical, runs in O(nlogn+p2log2(n/p))O(n \log n + p^2 \log^2(n/p)) time, and when p=O(n)p=O(\sqrt{n}) it is faster than Megiddo and Tamir's O(nlog2nloglogn)O(n \log^2n \log\log n) time algorithm [megiddo1983]

    Data-Collection for the Sloan Digital Sky Survey: a Network-Flow Heuristic

    Full text link
    The goal of the Sloan Digital Sky Survey is ``to map in detail one-quarter of the entire sky, determining the positions and absolute brightnesses of more than 100 million celestial objects''. The survey will be performed by taking ``snapshots'' through a large telescope. Each snapshot can capture up to 600 objects from a small circle of the sky. This paper describes the design and implementation of the algorithm that is being used to determine the snapshots so as to minimize their number. The problem is NP-hard in general; the algorithm described is a heuristic, based on Lagriangian-relaxation and min-cost network flow. It gets within 5-15% of a naive lower bound, whereas using a ``uniform'' cover only gets within 25-35%.Comment: proceedings version appeared in ACM-SIAM Symposium on Discrete Algorithms (1998

    A new approximation algorithm for the multilevel facility location problem

    Get PDF
    In this paper we propose a new integer programming formulation for the multi-level facility location problem and a novel 3-approximation algorithm based on LP rounding. The linear program we are using has a polynomial number of variables and constraints, being thus more efficient than the one commonly used in the approximation algorithms for this type of problems

    Centrality of Trees for Capacitated k-Center

    Full text link
    There is a large discrepancy in our understanding of uncapacitated and capacitated versions of network location problems. This is perhaps best illustrated by the classical k-center problem: there is a simple tight 2-approximation algorithm for the uncapacitated version whereas the first constant factor approximation algorithm for the general version with capacities was only recently obtained by using an intricate rounding algorithm that achieves an approximation guarantee in the hundreds. Our paper aims to bridge this discrepancy. For the capacitated k-center problem, we give a simple algorithm with a clean analysis that allows us to prove an approximation guarantee of 9. It uses the standard LP relaxation and comes close to settling the integrality gap (after necessary preprocessing), which is narrowed down to either 7, 8 or 9. The algorithm proceeds by first reducing to special tree instances, and then solves such instances optimally. Our concept of tree instances is quite versatile, and applies to natural variants of the capacitated k-center problem for which we also obtain improved algorithms. Finally, we give evidence to show that more powerful preprocessing could lead to better algorithms, by giving an approximation algorithm that beats the integrality gap for instances where all non-zero capacities are uniform.Comment: 21 pages, 2 figure

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc
    corecore