13 research outputs found

    Evolving parametrized Loss for Image Classification Learning on Small Datasets

    Full text link
    This paper proposes a meta-learning approach to evolving a parametrized loss function, which is called Meta-Loss Network (MLN), for training the image classification learning on small datasets. In our approach, the MLN is embedded in the framework of classification learning as a differentiable objective function. The MLN is evolved with the Evolutionary Strategy algorithm (ES) to an optimized loss function, such that a classifier, which optimized to minimize this loss, will achieve a good generalization effect. A classifier learns on a small training dataset to minimize MLN with Stochastic Gradient Descent (SGD), and then the MLN is evolved with the precision of the small-dataset-updated classifier on a large validation dataset. In order to evaluate our approach, the MLN is trained with a large number of small sample learning tasks sampled from FashionMNIST and tested on validation tasks sampled from FashionMNIST and CIFAR10. Experiment results demonstrate that the MLN effectively improved generalization compared to classical cross-entropy error and mean squared error

    Resource efficient boosting method for IoT security monitoring.

    Get PDF
    Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML method that can detect various attacks on IoT devices. It utilizes Light Gradient Boosting Machine (LGBM). The performance of this approach was evaluated against four realistic IoT benchmark datasets. Experimental results show that the proposed method can effectively detect attacks on IoT devices with limited resources, and outperforms the state of the art techniques

    Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning

    Full text link
    In this paper, we develop upon the emerging topic of loss function learning, which aims to learn loss functions that significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for learning model-agnostic loss functions via a hybrid neuro-symbolic search approach. The framework first uses evolution-based methods to search the space of primitive mathematical operations to find a set of symbolic loss functions. Second, the set of learned loss functions are subsequently parameterized and optimized via an end-to-end gradient-based training procedure. The versatility of the proposed framework is empirically validated on a diverse set of supervised learning tasks. Results show that the meta-learned loss functions discovered by the newly proposed method outperform both the cross-entropy loss and state-of-the-art loss function learning methods on a diverse range of neural network architectures and datasets

    Towards Run-time Efficient Hierarchical Reinforcement Learning

    Get PDF
    This paper investigates a novel method combining Scalable Evolution Strategies (S-ES) and Hierarchical Reinforcement Learning (HRL). S-ES, named for its excellent scalability, was popularised with demonstrated performance comparable to state-of-the-art policy gradient methods. However, S-ES has not been tested in conjunction with HRL methods, which empower temporal abstraction thus allowing agents to tackle more challenging problems. We introduce a novel method merging S-ES and HRL, which creates a highly scalable and efficient (compute time) algorithm. We demonstrate that the proposed method benefits from S-ES’s scalability and indifference to delayed rewards. This results in our main contribution: significantly higher learning speed and competitive performance compared to gradient-based HRL methods, across a range of tasks
    corecore