2,699 research outputs found

    Thematic Annotation: extracting concepts out of documents

    Get PDF
    Contrarily to standard approaches to topic annotation, the technique used in this work does not centrally rely on some sort of -- possibly statistical -- keyword extraction. In fact, the proposed annotation algorithm uses a large scale semantic database -- the EDR Electronic Dictionary -- that provides a concept hierarchy based on hyponym and hypernym relations. This concept hierarchy is used to generate a synthetic representation of the document by aggregating the words present in topically homogeneous document segments into a set of concepts best preserving the document's content. This new extraction technique uses an unexplored approach to topic selection. Instead of using semantic similarity measures based on a semantic resource, the later is processed to extract the part of the conceptual hierarchy relevant to the document content. Then this conceptual hierarchy is searched to extract the most relevant set of concepts to represent the topics discussed in the document. Notice that this algorithm is able to extract generic concepts that are not directly present in the document.Comment: Technical report EPFL/LIA. 81 pages, 16 figure

    A Relation-Based Page Rank Algorithm for Semantic Web Search Engines

    Get PDF
    With the tremendous growth of information available to end users through the Web, search engines come to play ever a more critical role. Nevertheless, because of their general-purpose approach, it is always less uncommon that obtained result sets provide a burden of useless pages. The next-generation Web architecture, represented by the Semantic Web, provides the layered architecture possibly allowing overcoming this limitation. Several search engines have been proposed, which allow increasing information retrieval accuracy by exploiting a key content of Semantic Web resources, that is, relations. However, in order to rank results, most of the existing solutions need to work on the whole annotated knowledge base. In this paper, we propose a relation-based page rank algorithm to be used in conjunction with Semantic Web search engines that simply relies on information that could be extracted from user queries and on annotated resources. Relevance is measured as the probability that a retrieved resource actually contains those relations whose existence was assumed by the user at the time of query definitio

    Predicting functional associations from metabolism using bi-partite network algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reconstructions contain detailed information about metabolic enzymes and their reactants and products. These networks can be used to infer functional associations between metabolic enzymes. Many methods are based on the number of metabolites shared by two enzymes, or the shortest path between two enzymes. Metabolite sharing can miss associations between non-consecutive enzymes in a serial pathway, and shortest-path algorithms are sensitive to high-degree metabolites such as water and ATP that create connections between enzymes with little functional similarity.</p> <p>Results</p> <p>We present new, fast methods to infer functional associations in metabolic networks. A local method, the degree-corrected Poisson score, is based only on the metabolites shared by two enzymes, but uses the known metabolite degree distribution. A global method, based on graph diffusion kernels, predicts associations between enzymes that do not share metabolites. Both methods are robust to high-degree metabolites. They out-perform previous methods in predicting shared Gene Ontology (GO) annotations and in predicting experimentally observed synthetic lethal genetic interactions. Including cellular compartment information improves GO annotation predictions but degrades synthetic lethal interaction prediction. These new methods perform nearly as well as computationally demanding methods based on flux balance analysis.</p> <p>Conclusions</p> <p>We present fast, accurate methods to predict functional associations from metabolic networks. Biological significance is demonstrated by identifying enzymes whose strong metabolic correlations are missed by conventional annotations in GO, most often enzymes involved in transport vs. synthesis of the same metabolite or other enzyme pairs that share a metabolite but are separated by conventional pathway boundaries. More generally, the methods described here may be valuable for analyzing other types of networks with long-tailed degree distributions and high-degree hubs.</p
    • …
    corecore