3 research outputs found

    Improved Semantic-Aware Network Embedding with Fine-Grained Word Alignment

    Full text link
    Network embeddings, which learn low-dimensional representations for each vertex in a large-scale network, have received considerable attention in recent years. For a wide range of applications, vertices in a network are typically accompanied by rich textual information such as user profiles, paper abstracts, etc. We propose to incorporate semantic features into network embeddings by matching important words between text sequences for all pairs of vertices. We introduce a word-by-word alignment framework that measures the compatibility of embeddings between word pairs, and then adaptively accumulates these alignment features with a simple yet effective aggregation function. In experiments, we evaluate the proposed framework on three real-world benchmarks for downstream tasks, including link prediction and multi-label vertex classification. Results demonstrate that our model outperforms state-of-the-art network embedding methods by a large margin.Comment: To appear at EMNLP 201

    Reasoning Over Semantic-Level Graph for Fact Checking

    Full text link
    Fact checking is a challenging task because verifying the truthfulness of a claim requires reasoning about multiple retrievable evidence. In this work, we present a method suitable for reasoning about the semantic-level structure of evidence. Unlike most previous works, which typically represent evidence sentences with either string concatenation or fusing the features of isolated evidence sentences, our approach operates on rich semantic structures of evidence obtained by semantic role labeling. We propose two mechanisms to exploit the structure of evidence while leveraging the advances of pre-trained models like BERT, GPT or XLNet. Specifically, using XLNet as the backbone, we first utilize the graph structure to re-define the relative distances of words, with the intuition that semantically related words should have short distances. Then, we adopt graph convolutional network and graph attention network to propagate and aggregate information from neighboring nodes on the graph. We evaluate our system on FEVER, a benchmark dataset for fact checking, and find that rich structural information is helpful and both our graph-based mechanisms improve the accuracy. Our model is the state-of-the-art system in terms of both official evaluation metrics, namely claim verification accuracy and FEVER score.Comment: 9page

    Improving Textual Network Learning with Variational Homophilic Embeddings

    Full text link
    The performance of many network learning applications crucially hinges on the success of network embedding algorithms, which aim to encode rich network information into low-dimensional vertex-based vector representations. This paper considers a novel variational formulation of network embeddings, with special focus on textual networks. Different from most existing methods that optimize a discriminative objective, we introduce Variational Homophilic Embedding (VHE), a fully generative model that learns network embeddings by modeling the semantic (textual) information with a variational autoencoder, while accounting for the structural (topology) information through a novel homophilic prior design. Homophilic vertex embeddings encourage similar embedding vectors for related (connected) vertices. The proposed VHE promises better generalization for downstream tasks, robustness to incomplete observations, and the ability to generalize to unseen vertices. Extensive experiments on real-world networks, for multiple tasks, demonstrate that the proposed method consistently achieves superior performance relative to competing state-of-the-art approaches.Comment: Accepted to NeurIPS 201
    corecore