5 research outputs found

    Robust Algorithms for Low-Rank and Sparse Matrix Models

    Full text link
    Data in statistical signal processing problems is often inherently matrix-valued, and a natural first step in working with such data is to impose a model with structure that captures the distinctive features of the underlying data. Under the right model, one can design algorithms that can reliably tease weak signals out of highly corrupted data. In this thesis, we study two important classes of matrix structure: low-rankness and sparsity. In particular, we focus on robust principal component analysis (PCA) models that decompose data into the sum of low-rank and sparse (in an appropriate sense) components. Robust PCA models are popular because they are useful models for data in practice and because efficient algorithms exist for solving them. This thesis focuses on developing new robust PCA algorithms that advance the state-of-the-art in several key respects. First, we develop a theoretical understanding of the effect of outliers on PCA and the extent to which one can reliably reject outliers from corrupted data using thresholding schemes. We apply these insights and other recent results from low-rank matrix estimation to design robust PCA algorithms with improved low-rank models that are well-suited for processing highly corrupted data. On the sparse modeling front, we use sparse signal models like spatial continuity and dictionary learning to develop new methods with important adaptive representational capabilities. We also propose efficient algorithms for implementing our methods, including an extension of our dictionary learning algorithms to the online or sequential data setting. The underlying theme of our work is to combine ideas from low-rank and sparse modeling in novel ways to design robust algorithms that produce accurate reconstructions from highly undersampled or corrupted data. We consider a variety of application domains for our methods, including foreground-background separation, photometric stereo, and inverse problems such as video inpainting and dynamic magnetic resonance imaging.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143925/1/brimoor_1.pd

    High Dimensional Covariance Estimation for Spatio-Temporal Processes

    Full text link
    High dimensional time series and array-valued data are ubiquitous in signal processing, machine learning, and science. Due to the additional (temporal) direction, the total dimensionality of the data is often extremely high, requiring large numbers of training examples to learn the distribution using unstructured techniques. However, due to difficulties in sampling, small population sizes, and/or rapid system changes in time, it is often the case that very few relevant training samples are available, necessitating the imposition of structure on the data if learning is to be done. The mean and covariance are useful tools to describe high dimensional distributions because (via the Gaussian likelihood function) they are a data-efficient way to describe a general multivariate distribution, and allow for simple inference, prediction, and regression via classical techniques. In this work, we develop various forms of multidimensional covariance structure that explicitly exploit the array structure of the data, in a way analogous to the widely used low rank modeling of the mean. This allows dramatic reductions in the number of training samples required, in some cases to a single training sample. Covariance models of this form have been increasing in interest recently, and statistical performance bounds for high dimensional estimation in sample-starved scenarios are of great relevance. This thesis focuses on the high-dimensional covariance estimation problem, exploiting spatio-temporal structure to reduce sample complexity. Contributions are made in the following areas: (1) development of a variety of rich Kronecker product-based covariance models allowing the exploitation of spatio-temporal and other structure with applications to sample-starved real data problems, (2) strong performance bounds for high-dimensional estimation of covariances under each model, and (3) a strongly adaptive online method for estimating changing optimal low-dimensional metrics (inverse covariances) for high-dimensional data from a series of similarity labels.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137082/1/greenewk_1.pd
    corecore