846 research outputs found

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    A Deterministic Theory for Exact Non-Convex Phase Retrieval

    Full text link
    In this paper, we analyze the non-convex framework of Wirtinger Flow (WF) for phase retrieval and identify a novel sufficient condition for universal exact recovery through the lens of low rank matrix recovery theory. Via a perspective in the lifted domain, we show that the convergence of the WF iterates to a true solution is attained geometrically under a single condition on the lifted forward model. As a result, a deterministic relationship between the accuracy of spectral initialization and the validity of {the regularity condition} is derived. In particular, we determine that a certain concentration property on the spectral matrix must hold uniformly with a sufficiently tight constant. This culminates into a sufficient condition that is equivalent to a restricted isometry-type property over rank-1, positive semi-definite matrices, and amounts to a less stringent requirement on the lifted forward model than those of prominent low-rank-matrix-recovery methods in the literature. We characterize the performance limits of our framework in terms of the tightness of the concentration property via novel bounds on the convergence rate and on the signal-to-noise ratio such that the theoretical guarantees are valid using the spectral initialization at the proper sample complexity.Comment: In Revision for IEEE Transactions on Signal Processin
    • …
    corecore