3,611 research outputs found

    An investigation of interoperability issues between authorisation systems within web services

    Get PDF
    The existing authorisation systems within the context of Web Services mainly apply two access control approaches – Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC). The RBAC approach links an authenticated Web Service Requester to its specific access control permission through roles, but RBAC is not flexible enough to cater for some cases where extra attribute information is needed in addition to the identity. By contrast, the ABAC approach has more flexibility, as it allows a Web Service Requester to submit necessary credentials containing extra attribute information that can fulfil the policies declared by a Web Service Provider, which aims to protect the sensitive resources/services.RBAC and ABAC can only help to establish a unilateral trust relationship between two Web Services to enable a Web Service Provider to make an access control decision. Unfortunately, the nature of Web Services presents a high probability that two Web Services may not know each other. Therefore, successful authorisation may fail, if the Web Service Requester does not trust the Web Service Provider.Trust Negotiation (TN) is also an access control approach, which can provide a bilateral trust relationship between two unknown entities, so it sometimes can enable authorisation success in situations where success is not possible through RBAC or ABAC approaches. However, interoperability issues will arise between authorisation systems within Web Services, where a bilateral trust-based authorisation solution is applied. In addition, a lack of a unified approach that can address the interoperability issues remains as a research problem. This research aims to explore possible factors causing the lack of interoperability first, and then to explore an approach that can address the interoperability issues. The main contributions of this research are an improved interoperability model illustrating interoperability issues at different layers of abstraction, and a novel interoperability-solution design along with an improved TN protocol as an example of utilising this design to provide interoperability between authorisation systems within Web Services

    Advanced languages and techniques for trust negotiation.

    Get PDF
    The Web is quickly shifting from a document browsing and delivery system to a hugely complex ecosystem of interconnected online applications. A relevant portion of these applications dramatically increase the number of users required to dynamically authenticate themselves and to, on the other hand, to identify the service they want to use. In order to manage interactions among such users/services is required a flexible but powerful mechanism. Trust management, and in particular trust negotiation techniques, is a reasonable solution. In this work we present the formalization of the well known trust negotiation framework Trust-X, of a rule-based policy definition language, called X-RNL. Moreover, we present the extension of both the framework and of the language to provide advanced trust negotiation architectures, namely negotiations among groups. We also provide protocols to adapt trust negotiations to mobile environments, specifically, we present protocols allowing a trust negotiation to be executed among several, distinct, sessions while still preserving its security properties. Such protocols have also been extended to provides the capability to migrate a ongoing trust negotiation among a set of known, reliable, subjects. Finally, we present the application of the previously introduced trust negotiation techniques into real world scenarios: online social networks, critical infrastructures and cognitive radio networks

    Designing Data Spaces

    Get PDF
    This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty

    Self-Protecting Access Control: On Mitigating Privacy Violations with Fault Tolerance

    Get PDF
    Self-protecting access control mechanisms can be described as an approach to enforcing security in a manner that automatically protects against violations of access control rules. In this chapter, we present a comparative analysis of standard Cryptographic Access Control (CAC) schemes in relation to privacy enforcement on the Web. We postulate that to mitigate privacy violations, self-protecting CAC mechanisms need to be supported by fault-tolerance. As an example of how one might to do this, we present two solutions that are inspired by the autonomic computing paradigm1. Our solutions are centered on how CAC schemes can be extended to protect against privacy violations that might arise from key updates and collusion attacks

    Secure collaboration in onboarding

    Get PDF
    The process of onboarding a company is characterized by inter-enterprise collaboration between the acquiring and the acquired companies. Multiple cross-functional teams are formed to assimilate and integrate the processes, products, data, customers, and partners of the company under acquisition. Dynamic access control management in such inter-enterprise collaboration is the subject of this thesis. A problem in inter-enterprise collaboration in onboarding is that information assets shared by collaborating teams are not adequately protected. As a result, there is potential for accidental or malicious leakage of sensitive business information like the intellectual property, product roadmaps and strategy, customer lists etc. Also, the statically defined access control policies are not sufficient to address access control requirements of dynamic collaboration where there is a constant change in people, processes, and information assets in collaboration repository. This research proposes a new approach and model to integrate security in onboarding collaboration process. Research methods such as, literature review, field studies including direct experiential projects in onboarding and interviews with experts in Mergers and Acquisitions, and detailed data collection and analysis through surveys are used to identify the issues that need to be addressed in the onboarding process. Literature review enabled the identification of access control requirements from the perspective of statically defined policies and the need to determine access dynamically. From the field studies, it was deciphered that there is a need for a well-defined onboarding collaboration process. The data analysis and interpretation from the survey results provided insights into the needs for integrating security in all phases of onboarding collaboration. All these research methods essentially enabled identification of two key issues that this research addresses: 1) well-defined onboarding collaboration process and 2) building security in all phases of onboarding collaboration. A new approach and model called SCODA is developed to integrate security in all phases of onboarding collaboration. Onboarding collaboration process consists of four phases: create, operate, dissolve, and archive. These phases provide the basis for systematically addressing security and access control when the collaboration team is formed, while it is operating, when the team is dissolved after completing its tasks, and when shared information assets are archived. The research adapts role based access control (RBAC) and formally defines the enterprise, functional, and collaboration roles for making access control management decisions. New ideas are developed in trustbased access control management in dynamic collaboration. The change management aspects are also discussed. The SCODA model is validated and the refinements incorporated accordingly. This research contributed to both theory and practice of information security in general and access control in particular in the context of dynamic collaboration. It proposed a new approach of building security in, i.e. to integrate security in all phases of collaboration. In order to build security in, a new onboarding collaboration process is developed that is adaptable and customizable. It has also developed a new approach for trust based dynamic access control based on the new concepts of strong and weak trust relationships. These trust relationships are also adaptable and customizable. Finally, this research has potential for future research work in the design and implementation of multi-paradigm based enterprise security frameworks and interenterprise collaboration

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la dernière décennie, le paradigme du Cloud Computing a révolutionné la manière dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donné l’opportunité de répondre à la demande constamment croissante liée aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des données. Les consommateurs du Cloud ont généralement accès, sur demande, à un large éventail bien réparti d’infrastructures de TI offrant une pléthore de services. Ils sont à même de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intégrante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degré optimal d’utilisation des ressources tout en réduisant leurs coûts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgré elle les menaces existantes à la sécurité des TI et en crée de nouvelles qui sont intrinsèques à l’architecture du Cloud Computing. C’est pourquoi il existe un réel besoin d’évaluation des risques liés à la sécurité du Cloud durant le procédé de la sélection et du déploiement des services. Au cours des dernières années, l’impact d’une efficace gestion de la satisfaction des besoins en sécurité des services a été pris avec un sérieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intégration réussie de l’élément de sécurité dans les opérations de la gestion des ressources du Cloud ne requiert pas seulement une recherche méthodique, mais aussi une modélisation méticuleuse des exigences du Cloud en termes de sécurité. C’est en considérant ces facteurs que nous adressons dans cette thèse les défis liés à l’évaluation de la sécurité et à son intégration dans les environnements indépendants et interconnectés du Cloud Computing. D’une part, nous sommes motivés à offrir aux consommateurs du Cloud un ensemble de méthodes qui leur permettront d’optimiser la sécurité de leurs services et, d’autre part, nous offrons aux fournisseurs un éventail de stratégies qui leur permettront de mieux sécuriser leurs services d’hébergements du Cloud. L’originalité de cette thèse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement à la sécurité ; et 2) la conception de modèles mathématiques rigoureux qui intègrent le facteur de sécurité dans les problèmes traditionnels du déploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thèse est réalisé en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases
    • …
    corecore