2 research outputs found

    ToPoliNano and fiction: Design Tools for Field-coupled Nanocomputing

    Get PDF
    Field-coupled Nanocomputing (FCN) is a computing concept with several promising post-CMOS candidate implementations that offer tremendously low power dissipation and highest processing performance at the same time. Two of the manifold physical implementations are Quantum-dot Cellular Automata (QCA) and Nanomagnet Logic (NML). Both inherently come with domain-specific properties and design constraints that render established conventional design algorithms inapplicable. Accordingly, dedicated design tools for those technologies are required. This paper provides an overview of two leading examples of such tools, namely fiction and ToPoliNano. Both tools provide effective methods that cover aspects such as placement, routing, clocking, design rule checking, verification, and logical as well as physical simulation. By this, both freely available tools provide platforms for future research in the FCN domain

    The DFS-heuristic for orthogonal graph drawing☆☆Some of these result were published in the author's PhD thesis at Rutgers University; the author would like to thank her advisor, Prof. Endre Boros, for much helpful input. The results in Section 5 have been presented at the 8th Canadian Conference on Computational Geometry, Ottawa, 1996, see [1].

    Get PDF
    AbstractIn this paper, we present a new heuristic for orthogonal graph drawings, which creates drawings by performing a depth-first search and placing the nodes in the order they are encountered. This DFS-heuristic works for graphs with arbitrarily high degrees, and particularly well for graphs with maximum degree 3. It yields drawings with at most one bend per edge, and a total number of m−n+1 bends for a graph with n nodes and m edges; this improves significantly on the best previous bound of m−2 bends
    corecore