17 research outputs found

    Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs

    Full text link
    Memory-Bounded Dynamic Programming (MBDP) has proved extremely effective in solving decentralized POMDPs with large horizons. We generalize the algorithm and improve its scalability by reducing the complexity with respect to the number of observations from exponential to polynomial. We derive error bounds on solution quality with respect to this new approximation and analyze the convergence behavior. To evaluate the effectiveness of the improvements, we introduce a new, larger benchmark problem. Experimental results show that despite the high complexity of decentralized POMDPs, scalable solution techniques such as MBDP perform surprisingly well.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007

    Near-Optimal Adversarial Policy Switching for Decentralized Asynchronous Multi-Agent Systems

    Full text link
    A key challenge in multi-robot and multi-agent systems is generating solutions that are robust to other self-interested or even adversarial parties who actively try to prevent the agents from achieving their goals. The practicality of existing works addressing this challenge is limited to only small-scale synchronous decision-making scenarios or a single agent planning its best response against a single adversary with fixed, procedurally characterized strategies. In contrast this paper considers a more realistic class of problems where a team of asynchronous agents with limited observation and communication capabilities need to compete against multiple strategic adversaries with changing strategies. This problem necessitates agents that can coordinate to detect changes in adversary strategies and plan the best response accordingly. Our approach first optimizes a set of stratagems that represent these best responses. These optimized stratagems are then integrated into a unified policy that can detect and respond when the adversaries change their strategies. The near-optimality of the proposed framework is established theoretically as well as demonstrated empirically in simulation and hardware

    Dynamic Programming Approximations for Partially Observable Stochastic Games

    Get PDF
    Partially observable stochastic games (POSGs) provide a rich mathematical framework for planning under uncertainty by a group of agents. However, this modeling advantage comes with a price, namely a high computational cost. Solving POSGs optimally quickly becomes intractable after a few decision cycles. Our main contribution is to provide bounded approximation techniques, which enable us to scale POSG algorithms by several orders of magnitude. We study both the POSG model and its cooperative counterpart, DEC-POMDP. Experiments on a number of problems confirm the scalability of our approach while still providing useful policies
    corecore