87 research outputs found

    Improved Lower Bounds for the Capacity of i.i.d. Deletion and Duplication Channels

    Full text link

    A Note on the Deletion Channel Capacity

    Full text link
    Memoryless channels with deletion errors as defined by a stochastic channel matrix allowing for bit drop outs are considered in which transmitted bits are either independently deleted with probability dd or unchanged with probability 1−d1-d. Such channels are information stable, hence their Shannon capacity exists. However, computation of the channel capacity is formidable, and only some upper and lower bounds on the capacity exist. In this paper, we first show a simple result that the parallel concatenation of two different independent deletion channels with deletion probabilities d1d_1 and d2d_2, in which every input bit is either transmitted over the first channel with probability of λ\lambda or over the second one with probability of 1−λ1-\lambda, is nothing but another deletion channel with deletion probability of d=λd1+(1−λ)d2d=\lambda d_1+(1-\lambda)d_2. We then provide an upper bound on the concatenated deletion channel capacity C(d)C(d) in terms of the weighted average of C(d1)C(d_1), C(d2)C(d_2) and the parameters of the three channels. An interesting consequence of this bound is that C(λd1+(1−λ))≤λC(d1)C(\lambda d_1+(1-\lambda))\leq \lambda C(d_1) which enables us to provide an improved upper bound on the capacity of the i.i.d. deletion channels, i.e., C(d)≤0.4143(1−d)C(d)\leq 0.4143(1-d) for d≥0.65d\geq 0.65. This generalizes the asymptotic result by Dalai as it remains valid for all d≥0.65d\geq 0.65. Using the same approach we are also able to improve upon existing upper bounds on the capacity of the deletion/substitution channel.Comment: Submitted to the IEEE Transactions on Information Theor

    Capacity Bounds for Sticky Channels

    Full text link

    On Asynchronous Communication Systems: Capacity Bounds and Relaying Schemes

    Get PDF
    abstract: Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.Dissertation/ThesisPh.D. Electrical Engineering 201
    • …
    corecore