11,831 research outputs found

    HealthBlock: A Blockchain-IoT Fusion for Secure Healthcare Data Exchange

    Get PDF
    Managing healthcare data while ensuring its security and privacy is critical to providing quality care to patients. However, traditional approaches to healthcare data sharing have limitations, including the risk of data breaches and the lack of privacy-preserving mechanisms. This research paper proposes a novel hybrid blockchain-IoT approach for privacy-preserving healthcare data sharing that addresses these challenges. Our system incorporates a private blockchain for protected and tamper-proof data sharing, with privacy-preserving techniques such as differential privacy and homomorphic encryption to protect patient data. IoT devices are utilized to collect and transmit real-time data, equipped with privacy-preserving mechanisms such as data anonymization and secure transmission protocols. Our approach achieved an accuracy rate of 98% for access control and a 99.6% success rate for data privacy protection. Furthermore, our proposed system demonstrated improved data storage and retrieval performance, with a data storage overhead reduction of up to 86% and a data retrieval time reduction of up to 81%. These results indicate the potential of our approach to enhance the security, privacy, and efficiency of healthcare data management, contributing to improved patient care outcomes

    Blockchain Application on the Internet of Vehicles (IoV)

    Full text link
    With the rapid development of the Internet of Things (IoT) and its potential integration with the traditional Vehicular Ad-Hoc Networks (VANETs), we have witnessed the emergence of the Internet of Vehicles (IoV), which promises to seamlessly integrate into smart transportation systems. However, the key characteristics of IoV, such as high-speed mobility and frequent disconnections make it difficult to manage its security and privacy. The Blockchain, as a distributed tamper-resistant ledge, has been proposed as an innovative solution that guarantees privacy-preserving yet secure schemes. In this paper, we review recent literature on the application of blockchain to IoV, in particular, and intelligent transportation systems in general

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    NFT-Based Blockchain-Oriented Security Framework for Metaverse Applications

    Full text link
    The Metaverse is rapidly evolving, bringing us closer to its imminent reality. However, the widespread adoption of this new automated technology poses significant research challenges in terms of authenticity, integrity, interoperability, and efficiency. These challenges originate from the core technologies underlying the Metaverse and are exacerbated by its complex nature. As a solution to these challenges, this paper presents a novel framework based on Non-Fungible Tokens (NFTs). The framework employs the Proof-of-Stake consensus algorithm, a blockchain-based technology, for data transaction, validation, and resource management. PoS efficiently consume energy and provide a streamlined validation approach instead of resource-intensive mining. This ability makes PoS an ideal candidate for Metaverse applications. By combining NFTs for user authentication and PoS for data integrity, enhanced transaction throughput, and improved scalability, the proposed blockchain mechanism demonstrates noteworthy advantages. Through security analysis, experimental and simulation results, it is established that the NFT-based approach coupled with the PoS algorithm is secure and efficient for Metaverse applications.Comment: 10 page
    • …
    corecore