42 research outputs found

    Graph Matching in Correlated Stochastic Block Models for Improved Graph Clustering

    Full text link
    We consider community detection from multiple correlated graphs sharing the same community structure. The correlated graphs are generated by independent subsampling of a parent graph sampled from the stochastic block model. The vertex correspondence between the correlated graphs is assumed to be unknown. We consider the two-step procedure where the vertex correspondence between the correlated graphs is first revealed, and the communities are recovered from the union of the correlated graphs, which becomes denser than each single graph. We derive the information-theoretic limits for exact graph matching in general density regimes and the number of communities, and then analyze the regime of graph parameters, where one can benefit from the matching of the correlated graphs in recovering the latent community structure of the graphs.Comment: Allerton Conference 202

    Exact Clustering of Weighted Graphs via Semidefinite Programming

    Full text link
    As a model problem for clustering, we consider the densest k-disjoint-clique problem of partitioning a weighted complete graph into k disjoint subgraphs such that the sum of the densities of these subgraphs is maximized. We establish that such subgraphs can be recovered from the solution of a particular semidefinite relaxation with high probability if the input graph is sampled from a distribution of clusterable graphs. Specifically, the semidefinite relaxation is exact if the graph consists of k large disjoint subgraphs, corresponding to clusters, with weight concentrated within these subgraphs, plus a moderate number of outliers. Further, we establish that if noise is weakly obscuring these clusters, i.e, the between-cluster edges are assigned very small weights, then we can recover significantly smaller clusters. For example, we show that in approximately sparse graphs, where the between-cluster weights tend to zero as the size n of the graph tends to infinity, we can recover clusters of size polylogarithmic in n. Empirical evidence from numerical simulations is also provided to support these theoretical phase transitions to perfect recovery of the cluster structure

    A semidefinite program for unbalanced multisection in the stochastic block model

    Full text link
    We propose a semidefinite programming (SDP) algorithm for community detection in the stochastic block model, a popular model for networks with latent community structure. We prove that our algorithm achieves exact recovery of the latent communities, up to the information-theoretic limits determined by Abbe and Sandon (2015). Our result extends prior SDP approaches by allowing for many communities of different sizes. By virtue of a semidefinite approach, our algorithms succeed against a semirandom variant of the stochastic block model, guaranteeing a form of robustness and generalization. We further explore how semirandom models can lend insight into both the strengths and limitations of SDPs in this setting.Comment: 29 page
    corecore