2 research outputs found

    Power-efficient space shift keying transmission via semidefinite programming

    Get PDF
    Space shift keying (SSK) transmission is a low-complexity complement to spatial modulation (SM) that solely relies on a spatial-constellation diagram for conveying information. The achievable performance of SSK is determined by the channel conditions, which in turn define the minimum Euclidean distance (MED) of the symbols in the received SSK constellation. In this contribution we concentrate on improving the power efficiency of SSK transmission via symbol pre-scaling. Specifically, we pose a pair of related optimization problems for a) enhancing the MED at reception while satisfying a given power constraint at the transmitter, and b) reducing the transmission power required for achieving a given MED. The resultant optimization problems are NP-hard, hence they are subsequently reformulated and solved via semidefinite programming. The results presented demonstrate that the proposed pre-scaling strategies are capable of enhancing the attainable performance of conventional SSK, while simultaneously extending its applicability and reducing the complexity of the existing pre-scaling schemes

    Energy-Efficient System Design for Future Wireless Communications

    Get PDF
    The exponential growth of wireless data traffic has caused a significant increase in the power consumption of wireless communications systems due to the higher complexity of the transceiver structures required to establish the communication links. For this reason, in this Thesis we propose and characterize technologies for improving the energy efficiency of multiple-antenna wireless communications. This Thesis firstly focuses on energy-efficient transmission schemes and commences by introducing a scheme for alleviating the power loss experienced by the Tomlinson-Harashima precoder, by aligning the interference of a number of users with the symbols to transmit. Subsequently, a strategy for improving the performance of space shift keying transmission via symbol pre-scaling is presented. This scheme re-formulates complex optimization problems via semidefinite relaxation to yield problem formulations that can be efficiently solved. In a similar line, this Thesis designs a signal detection scheme based on compressive sensing to improve the energy efficiency of spatial modulation systems in multiple access channels. The proposed technique relies on exploiting the particular structure and sparsity that spatial modulation systems inherently possess to enhance performance. This Thesis also presents research carried out with the aim of reducing the hardware complexity and associated power consumption of large scale multiple-antenna base stations. In this context, the employment of incomplete channel state information is proposed to achieve the above-mentioned objective in correlated communication channels. The candidate’s work developed in Bell Labs is also presented, where the feasibility of simplified hardware architectures for massive antenna systems is assessed with real channel measurements. Moreover, a strategy for reducing the hardware complexity of antenna selection schemes by simplifying the design of the switching procedure is also analyzed. Overall, extensive theoretical and simulation results support the improved energy efficiency and complexity of the proposed schemes, towards green wireless communications systems
    corecore