5,866 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂşblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    A novel channel-adaptive uplink access control protocol for nomadic computing

    Get PDF
    We consider the uplink access control problem in a mobile nomadic computing system, which is based on a cellular phone network in that a user can use the mobile device to transmit voice or file data. This resource management problem is important because an efficient solution to uplink access control is critical for supporting a large user population with a reasonable level of quality of service (QoS). While there are a number of recently proposed protocols for uplink access control, these protocols possess a common drawback in that they do not adapt well to the burst error properties, which are inevitable in using wireless communication channels. In this paper, we propose a novel TDMA-based uplink access protocol, which employs a channel state dependent allocation strategy. Our protocol is motivated by two observations: 1) when channel state is bad, the throughput is low due to the large amount of FEC (forward error correction) or excessive ARQ (automatic repeated request) that is needed and 2) because of item 1, much of the mobile device's energy is wasted. The proposed protocol works closely with the underlying physical layer in that, through observing the channel state information (CSI) of each mobile device, the MAC protocol first segregates a set of users with good CSI from requests gathered in the request contention phase of an uplink frame. The protocol then judiciously allocates channel bandwidth to contending users based on their channel conditions. Simulation results indicate that the proposed protocol considerably outperforms five state-of-the-art protocols in terms of packet loss, delay, and throughput.published_or_final_versio

    On IP over WDM burst-switched long haul and metropolitan area networks

    Get PDF
    The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution ushered in by the phenomenal advances in networking technologies and technical breakthroughs in optical communications, fueled by the increasing demand in the reduction of operation costs and the network management complexity. The unprecedented bandwidth provisioning capability and the multi-service supportability of the WDM technology, in synergy with the data-oriented internetworking mechanisms, facilitates a common shared infrastructure for the Next Generation Internet (NGJ). While NGI targets to perform packet processing directly on the optical transport layer, a smooth evolution is critical to success. Intense research has been conducted to design the new generation optical networks that retain the advantages of packet-oriented transport prototypes while rendering elastic network resource utilization and graded levels of service. This dissertation is focused on the control architecture, enabling technologies, and performance analysis of the WDM burst-switched long haul and Metropolitan Area Networks (MANs). Theoretical analysis and simulation results are reported to demonstrate the system performance and efficiency of proposed algorithms. A novel transmission mechanism, namely, the Forward Resource Reservation (ERR) mechanism, is proposed to reduce the end-to-end delay for an Optical Burst Switching (OBS)-based IP over WDM system. The ERR scheme adopts a Linear Predictive Filter and an aggressive reservation strategy for data burst length prediction and resource reservation, respectively, and is extended to facilitate Quality of Service (QoS) differentiation at network edges. The ERR scheme improves the real-time communication services for applications with time constraints without deleterious system costs. The aggressive strategy for channel holding time reservations is proposed. Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth usage-driven (BUD) ones, are proposed for resource reservations in the FRRenabled scheme. These algorithms render explicit control on the latency reduction improvement and bandwidth usage efficiency, respectively, both of which are important figures of performance metrics. The optimization issue for the FRR-enabled system is studied based on two disciplines - addressing the static and dynamic models targeting different desired objectives (in terms of algorithm efficiency and system performance), and developing a \u27\u27crank back\u27\u27 based signaling mechanism to provide bandwidth usage efficiency. The proposed mechanisms enable the network nodes to make intelligent usage of the bandwidth resources. In addition, a new control architecture with enhanced address resolution protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is proposed for Ethernet-supported IP over WDM MANs. It is verified, via theoretical analysis and simulation results, that the E-ARP significantly reduces the call setup latency and the transmission requirements associated with the address probing procedures; the burst-based transport mechanism improves the network throughput and resource utilization; and the hop-based wavelength allocation algorithm provides bandwidth multiplexing with fairness and high scalability. The enhancement of the Ethernet services, in tandem with the innovative mechanisms in the WDM domain, facilitates a flexible and efficient integration, thus making the new generation optical MAN optimized for the scalable, survivable, and IP-dominated network at gigabit speed possible

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Performance enhancement of large scale networks with heterogeneous traffic.

    Get PDF
    Finally, these findings are applied towards improving the performance of the Differentiated Services architecture by developing a new Refined Assured Forwarding framework where heterogeneous traffic flows share the same aggregate class. The new framework requires minimal modification to the existing Diffserv routers. The efficiency of the new architecture in enhancing the performance of Diffserv is demonstrated by simulation results under different traffic scenarios.This dissertation builds on the notion that segregating traffic with disparate characteristics into separate channels generally results in a better performance. Through a quantitative analysis, it precisely defines the number of classes and the allocation of traffic into these classes that will lead to optimal performance from a latency standpoint. Additionally, it weakens the most generally used assumption of exponential or geometric distribution of traffic service time in the integration versus segregation studies to date by including self-similarity in network traffic.The dissertation also develops a pricing model based on resource usage in a system with segregated channels. Based on analytical results, this dissertation proposes a scheme whereby a service provider can develop compensatory and fair prices for customers with varying QoS requirements under a wide variety of ambient traffic scenarios.This dissertation provides novel techniques for improving the Quality of Service by enhancing the performance of queue management in large scale packet switched networks with a high volume of traffic. Networks combine traffic from multiple sources which have disparate characteristics. Multiplexing such heterogeneous traffic usually results in adverse effects on the overall performance of the network
    • …
    corecore