1,453 research outputs found

    Speed-scaling with no Preemptions

    Full text link
    We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor's speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a (1+Ï”)αB~α(1+\epsilon)^{\alpha}\tilde{B}_{\alpha}-approximation algorithm, where B~α\tilde{B}_{\alpha} is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio B~α((1+Ï”)(1+wmax⁥wmin⁥))α\tilde{B}_{\alpha}((1+\epsilon)(1+\frac{w_{\max}}{w_{\min}}))^{\alpha} improving the best known result by a factor of (52)α−1(wmax⁥wmin⁥)α(\frac{5}{2})^{\alpha-1}(\frac{w_{\max}}{w_{\min}})^{\alpha}. Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which ri≀rjr_i \le r_j if and only if di≀djd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    Energy-efficient algorithms for non-preemptive speed-scaling

    Full text link
    We improve complexity bounds for energy-efficient speed scheduling problems for both the single processor and multi-processor cases. Energy conservation has become a major concern, so revisiting traditional scheduling problems to take into account the energy consumption has been part of the agenda of the scheduling community for the past few years. We consider the energy minimizing speed scaling problem introduced by Yao et al. where we wish to schedule a set of jobs, each with a release date, deadline and work volume, on a set of identical processors. The processors may change speed as a function of time and the energy they consume is the α\alphath power of its speed. The objective is then to find a feasible schedule which minimizes the total energy used. We show that in the setting with an arbitrary number of processors where all work volumes are equal, there is a 2(1+Δ)(5(1+Δ))α−1B~α=Oα(1)2(1+\varepsilon)(5(1+\varepsilon))^{\alpha -1}\tilde{B}_{\alpha}=O_{\alpha}(1) approximation algorithm, where B~α\tilde{B}_{\alpha} is the generalized Bell number. This is the first constant factor algorithm for this problem. This algorithm extends to general unequal processor-dependent work volumes, up to losing a factor of ((1+r)r2)α(\frac{(1+r)r}{2})^{\alpha} in the approximation, where rr is the maximum ratio between two work volumes. We then show this latter problem is APX-hard, even in the special case when all release dates and deadlines are equal and rr is 4. In the single processor case, we introduce a new linear programming formulation of speed scaling and prove that its integrality gap is at most 12α−112^{\alpha -1}. As a corollary, we obtain a (12(1+Δ))α−1(12(1+\varepsilon))^{\alpha -1} approximation algorithm where there is a single processor, improving on the previous best bound of 2α−1(1+Δ)αB~α2^{\alpha-1}(1+\varepsilon)^{\alpha}\tilde{B}_{\alpha} when α≄25\alpha \ge 25

    A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State

    Full text link
    We study classical deadline-based preemptive scheduling of tasks in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each task is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed scaling alone, the addition of a sleep state makes it sometimes beneficial to accelerate the processing of tasks in order to transition the processor to the sleep state for longer amounts of time and incur further energy savings. The goal is to output a feasible schedule that minimizes the energy consumption. Since the introduction of the problem by Irani et al. [16], its exact computational complexity has been repeatedly posed as an open question (see e.g. [2,8,15]). The currently best known upper and lower bounds are a 4/3-approximation algorithm and NP-hardness due to [2] and [2,17], respectively. We close the aforementioned gap between the upper and lower bound on the computational complexity of speed scaling with sleep state by presenting a fully polynomial-time approximation scheme for the problem. The scheme is based on a transformation to a non-preemptive variant of the problem, and a discretization that exploits a carefully defined lexicographical ordering among schedules

    Energy Efficient Scheduling and Routing via Randomized Rounding

    Get PDF
    We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-non-migratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.Comment: 27 page

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    Capacitated Vehicle Routing with Non-Uniform Speeds

    Get PDF
    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our context, we appeal to ideas from the 2-approximation for scheduling in parallel machine of Lenstra et al.. This motivates the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since now we need to enforce correlation between the size of the parts and their distances to the depot
    • 

    corecore