9 research outputs found

    Stochastic Contextual Bandits with Graph-based Contexts

    Full text link
    We naturally generalize the on-line graph prediction problem to a version of stochastic contextual bandit problems where contexts are vertices in a graph and the structure of the graph provides information on the similarity of contexts. More specifically, we are given a graph G=(V,E)G=(V,E), whose vertex set VV represents contexts with {\em unknown} vertex label yy. In our stochastic contextual bandit setting, vertices with the same label share the same reward distribution. The standard notion of instance difficulties in graph label prediction is the cutsize ff defined to be the number of edges whose end points having different labels. For line graphs and trees we present an algorithm with regret bound of O~(T2/3K1/3f1/3)\tilde{O}(T^{2/3}K^{1/3}f^{1/3}) where KK is the number of arms. Our algorithm relies on the optimal stochastic bandit algorithm by Zimmert and Seldin~[AISTAT'19, JMLR'21]. When the best arm outperforms the other arms, the regret improves to O~(KTf)\tilde{O}(\sqrt{KT\cdot f}). The regret bound in the later case is comparable to other optimal contextual bandit results in more general cases, but our algorithm is easy to analyze, runs very efficiently, and does not require an i.i.d. assumption on the input context sequence. The algorithm also works with general graphs using a standard random spanning tree reduction

    Reward Imputation with Sketching for Contextual Batched Bandits

    Full text link
    Contextual batched bandit (CBB) is a setting where a batch of rewards is observed from the environment at the end of each episode, but the rewards of the non-executed actions are unobserved, resulting in partial-information feedback. Existing approaches for CBB often ignore the rewards of the non-executed actions, leading to underutilization of feedback information. In this paper, we propose an efficient approach called Sketched Policy Updating with Imputed Rewards (SPUIR) that completes the unobserved rewards using sketching, which approximates the full-information feedbacks. We formulate reward imputation as an imputation regularized ridge regression problem that captures the feedback mechanisms of both executed and non-executed actions. To reduce time complexity, we solve the regression problem using randomized sketching. We prove that our approach achieves an instantaneous regret with controllable bias and smaller variance than approaches without reward imputation. Furthermore, our approach enjoys a sublinear regret bound against the optimal policy. We also present two extensions, a rate-scheduled version and a version for nonlinear rewards, making our approach more practical. Experimental results show that SPUIR outperforms state-of-the-art baselines on synthetic, public benchmark, and real-world datasets.Comment: Accepted by NeurIPS 202

    Clustered Multi-Agent Linear Bandits

    Full text link
    We address in this paper a particular instance of the multi-agent linear stochastic bandit problem, called clustered multi-agent linear bandits. In this setting, we propose a novel algorithm leveraging an efficient collaboration between the agents in order to accelerate the overall optimization problem. In this contribution, a network controller is responsible for estimating the underlying cluster structure of the network and optimizing the experiences sharing among agents within the same groups. We provide a theoretical analysis for both the regret minimization problem and the clustering quality. Through empirical evaluation against state-of-the-art algorithms on both synthetic and real data, we demonstrate the effectiveness of our approach: our algorithm significantly improves regret minimization while managing to recover the true underlying cluster partitioning.Comment: 18 pages, 8 figure

    Local Clustering in Contextual Multi-Armed Bandits

    Full text link
    We study identifying user clusters in contextual multi-armed bandits (MAB). Contextual MAB is an effective tool for many real applications, such as content recommendation and online advertisement. In practice, user dependency plays an essential role in the user's actions, and thus the rewards. Clustering similar users can improve the quality of reward estimation, which in turn leads to more effective content recommendation and targeted advertising. Different from traditional clustering settings, we cluster users based on the unknown bandit parameters, which will be estimated incrementally. In particular, we define the problem of cluster detection in contextual MAB, and propose a bandit algorithm, LOCB, embedded with local clustering procedure. And, we provide theoretical analysis about LOCB in terms of the correctness and efficiency of clustering and its regret bound. Finally, we evaluate the proposed algorithm from various aspects, which outperforms state-of-the-art baselines.Comment: 12 page

    Optimal Algorithms for Latent Bandits with Cluster Structure

    Full text link
    We consider the problem of latent bandits with cluster structure where there are multiple users, each with an associated multi-armed bandit problem. These users are grouped into \emph{latent} clusters such that the mean reward vectors of users within the same cluster are identical. At each round, a user, selected uniformly at random, pulls an arm and observes a corresponding noisy reward. The goal of the users is to maximize their cumulative rewards. This problem is central to practical recommendation systems and has received wide attention of late \cite{gentile2014online, maillard2014latent}. Now, if each user acts independently, then they would have to explore each arm independently and a regret of Ω(MNT)\Omega(\sqrt{\mathsf{MNT}}) is unavoidable, where M,N\mathsf{M}, \mathsf{N} are the number of arms and users, respectively. Instead, we propose LATTICE (Latent bAndiTs via maTrIx ComplEtion) which allows exploitation of the latent cluster structure to provide the minimax optimal regret of O~((M+N)T)\widetilde{O}(\sqrt{(\mathsf{M}+\mathsf{N})\mathsf{T}}), when the number of clusters is O~(1)\widetilde{O}(1). This is the first algorithm to guarantee such strong regret bound. LATTICE is based on a careful exploitation of arm information within a cluster while simultaneously clustering users. Furthermore, it is computationally efficient and requires only O(logT)O(\log{\mathsf{T}}) calls to an offline matrix completion oracle across all T\mathsf{T} rounds.Comment: 48 pages. Accepted to AISTATS 2023. Added Experiment
    corecore