5 research outputs found

    Enhancing Chinese Intent Classification by Dynamically Integrating Character Features into Word Embeddings with Ensemble Techniques

    Full text link
    Intent classification has been widely researched on English data with deep learning approaches that are based on neural networks and word embeddings. The challenge for Chinese intent classification stems from the fact that, unlike English where most words are made up of 26 phonologic alphabet letters, Chinese is logographic, where a Chinese character is a more basic semantic unit that can be informative and its meaning does not vary too much in contexts. Chinese word embeddings alone can be inadequate for representing words, and pre-trained embeddings can suffer from not aligning well with the task at hand. To account for the inadequacy and leverage Chinese character information, we propose a low-effort and generic way to dynamically integrate character embedding based feature maps with word embedding based inputs, whose resulting word-character embeddings are stacked with a contextual information extraction module to further incorporate context information for predictions. On top of the proposed model, we employ an ensemble method to combine single models and obtain the final result. The approach is data-independent without relying on external sources like pre-trained word embeddings. The proposed model outperforms baseline models and existing methods

    Text Classification based on Multi-granularity Attention Hybrid Neural Network

    Full text link
    Neural network-based approaches have become the driven forces for Natural Language Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks: the recurrent neural network (RNN) and the convolution neural network (ConvNet). RNNs are good at modeling long-term dependencies over input texts, but preclude parallel computation. ConvNets do not have memory capability and it has to model sequential data as un-ordered features. Therefore, ConvNets fail to learn sequential dependencies over the input texts, but it is able to carry out high-efficient parallel computation. As each neural architecture, such as RNN and ConvNets, has its own pro and con, integration of different architectures is assumed to be able to enrich the semantic representation of texts, thus enhance the performance of NLP tasks. However, few investigation explores the reconciliation of these seemingly incompatible architectures. To address this issue, we propose a hybrid architecture based on a novel hierarchical multi-granularity attention mechanism, named Multi-granularity Attention-based Hybrid Neural Network (MahNN). The attention mechanism is to assign different weights to different parts of the input sequence to increase the computation efficiency and performance of neural models. In MahNN, two types of attentions are introduced: the syntactical attention and the semantical attention. The syntactical attention computes the importance of the syntactic elements (such as words or sentence) at the lower symbolic level and the semantical attention is used to compute the importance of the embedded space dimension corresponding to the upper latent semantics. We adopt the text classification as an exemplifying way to illustrate the ability of MahNN to understand texts

    Combine Convolution with Recurrent Networks for Text Classification

    Full text link
    Convolutional neural network (CNN) and recurrent neural network (RNN) are two popular architectures used in text classification. Traditional methods to combine the strengths of the two networks rely on streamlining them or concatenating features extracted from them. In this paper, we propose a novel method to keep the strengths of the two networks to a great extent. In the proposed model, a convolutional neural network is applied to learn a 2D weight matrix where each row reflects the importance of each word from different aspects. Meanwhile, we use a bi-directional RNN to process each word and employ a neural tensor layer that fuses forward and backward hidden states to get word representations. In the end, the weight matrix and word representations are combined to obtain the representation in a 2D matrix form for the text. We carry out experiments on a number of datasets for text classification. The experimental results confirm the effectiveness of the proposed method

    Multichannel CNN with Attention for Text Classification

    Full text link
    Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations

    Brain-inspired Search Engine Assistant based on Knowledge Graph

    Full text link
    Search engines can quickly response a hyperlink list according to query keywords. However, when a query is complex, developers need to repeatedly refine the search keywords and open a large number of web pages to find and summarize answers. Many research works of question and answering (Q and A) system attempt to assist search engines by providing simple, accurate and understandable answers. However, without original semantic contexts, these answers lack explainability, making them difficult for users to trust and adopt. In this paper, a brain-inspired search engine assistant named DeveloperBot based on knowledge graph is proposed, which aligns to the cognitive process of human and has the capacity to answer complex queries with explainability. Specifically, DeveloperBot firstly constructs a multi-layer query graph by splitting a complex multi-constraint query into several ordered constraints. Then it models the constraint reasoning process as subgraph search process inspired by the spreading activation model of cognitive science. In the end, novel features of the subgraph will be extracted for decision-making. The corresponding reasoning subgraph and answer confidence will be derived as explanations. The results of the decision-making demonstrate that DeveloperBot can estimate the answers and answer confidences with high accuracy. We implement a prototype and conduct a user study to evaluate whether and how the direct answers and the explanations provided by DeveloperBot can assist developers' information needs.Comment: 12 page
    corecore