8,042 research outputs found

    LifeLonger: A Benchmark for Continual Disease Classification

    Get PDF
    Deep learning models have shown a great effectiveness in recognition of findings in medical images. However, they cannot handle the ever-changing clinical environment, bringing newly annotated medical data from different sources. To exploit the incoming streams of data, these models would benefit largely from sequentially learning from new samples, without forgetting the previously obtained knowledge. In this paper we introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection, by applying existing state-of-the-art continual learning methods. In particular, we consider three continual learning scenarios, namely, task and class incremental learning and the newly defined cross-domain incremental learning. Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch, while cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge. We perform a thorough analysis of the performance and examine how the well-known challenges of continual learning, such as the catastrophic forgetting exhibit themselves in this setting. The encouraging results demonstrate that continual learning has a major potential to advance disease classification and to produce a more robust and efficient learning framework for clinical settings. The code repository, data partitions and baseline results for the complete benchmark will be made publicly available

    A Survey on Continual Semantic Segmentation: Theory, Challenge, Method and Application

    Full text link
    Continual learning, also known as incremental learning or life-long learning, stands at the forefront of deep learning and AI systems. It breaks through the obstacle of one-way training on close sets and enables continuous adaptive learning on open-set conditions. In the recent decade, continual learning has been explored and applied in multiple fields especially in computer vision covering classification, detection and segmentation tasks. Continual semantic segmentation (CSS), of which the dense prediction peculiarity makes it a challenging, intricate and burgeoning task. In this paper, we present a review of CSS, committing to building a comprehensive survey on problem formulations, primary challenges, universal datasets, neoteric theories and multifarious applications. Concretely, we begin by elucidating the problem definitions and primary challenges. Based on an in-depth investigation of relevant approaches, we sort out and categorize current CSS models into two main branches including \textit{data-replay} and \textit{data-free} sets. In each branch, the corresponding approaches are similarity-based clustered and thoroughly analyzed, following qualitative comparison and quantitative reproductions on relevant datasets. Besides, we also introduce four CSS specialities with diverse application scenarios and development tendencies. Furthermore, we develop a benchmark for CSS encompassing representative references, evaluation results and reproductions, which is available at~\url{https://github.com/YBIO/SurveyCSS}. We hope this survey can serve as a reference-worthy and stimulating contribution to the advancement of the life-long learning field, while also providing valuable perspectives for related fields.Comment: 20 pages, 12 figures. Undergoing Revie

    A multifidelity approach to continual learning for physical systems

    Full text link
    We introduce a novel continual learning method based on multifidelity deep neural networks. This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset, limiting catastrophic forgetting. On its own the multifidelity continual learning method shows robust results that limit forgetting across several datasets. Additionally, we show that the multifidelity method can be combined with existing continual learning methods, including replay and memory aware synapses, to further limit catastrophic forgetting. The proposed continual learning method is especially suited for physical problems where the data satisfy the same physical laws on each domain, or for physics-informed neural networks, because in these cases we expect there to be a strong correlation between the output of the previous model and the model on the current training domain

    Domain Generalization in Computational Pathology: Survey and Guidelines

    Full text link
    Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.Comment: Extended Versio

    Synthetic Data as Validation

    Full text link
    This study leverages synthetic data as a validation set to reduce overfitting and ease the selection of the best model in AI development. While synthetic data have been used for augmenting the training set, we find that synthetic data can also significantly diversify the validation set, offering marked advantages in domains like healthcare, where data are typically limited, sensitive, and from out-domain sources (i.e., hospitals). In this study, we illustrate the effectiveness of synthetic data for early cancer detection in computed tomography (CT) volumes, where synthetic tumors are generated and superimposed onto healthy organs, thereby creating an extensive dataset for rigorous validation. Using synthetic data as validation can improve AI robustness in both in-domain and out-domain test sets. Furthermore, we establish a new continual learning framework that continuously trains AI models on a stream of out-domain data with synthetic tumors. The AI model trained and validated in dynamically expanding synthetic data can consistently outperform models trained and validated exclusively on real-world data. Specifically, the DSC score for liver tumor segmentation improves from 26.7% (95% CI: 22.6%-30.9%) to 34.5% (30.8%-38.2%) when evaluated on an in-domain dataset and from 31.1% (26.0%-36.2%) to 35.4% (32.1%-38.7%) on an out-domain dataset. Importantly, the performance gain is particularly significant in identifying very tiny liver tumors (radius < 5mm) in CT volumes, with Sensitivity improving from 33.1% to 55.4% on an in-domain dataset and 33.9% to 52.3% on an out-domain dataset, justifying the efficacy in early detection of cancer. The application of synthetic data, from both training and validation perspectives, underlines a promising avenue to enhance AI robustness when dealing with data from varying domains

    Test-Time Training for Semantic Segmentation with Output Contrastive Loss

    Full text link
    Although deep learning-based segmentation models have achieved impressive performance on public benchmarks, generalizing well to unseen environments remains a major challenge. To improve the model's generalization ability to the new domain during evaluation, the test-time training (TTT) is a challenging paradigm that adapts the source-pretrained model in an online fashion. Early efforts on TTT mainly focus on the image classification task. Directly extending these methods to semantic segmentation easily experiences unstable adaption due to segmentation's inherent characteristics, such as extreme class imbalance and complex decision spaces. To stabilize the adaptation process, we introduce contrastive loss (CL), known for its capability to learn robust and generalized representations. Nevertheless, the traditional CL operates in the representation space and cannot directly enhance predictions. In this paper, we resolve this limitation by adapting the CL to the output space, employing a high temperature, and simplifying the formulation, resulting in a straightforward yet effective loss function called Output Contrastive Loss (OCL). Our comprehensive experiments validate the efficacy of our approach across diverse evaluation scenarios. Notably, our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.\footnote{Code and more information could be found at~ \url{https://github.com/dazhangyu123/OCL}
    • …
    corecore