5,708 research outputs found

    Influence of the accommodation coefficient on nonlinear bubble oscillations

    Get PDF
    This paper numerically investigates the effect of mass transfer processes on spherical single bubble dynamics using the Hertz–Langmuir–Knudsen approximation for the mass flux across the interface. Bubble behavior, with and without mass transfer, is studied for different values of pressure wave amplitude and frequency, as well as initial bubble radius. Whereas mass transfer processes do not seem to play a significant role on the bubble response for pressure amplitudes smaller than 0.9 atm, they appear to have an important effect when the amplitude is greater than or equal to 1 atm. For the later case, where the minimum liquid pressure reaches values around its vapor pressure, the importance of mass transfer depends on frequency. For frequencies in the 10^3–10^5 Hz range and initial bubble radii of the order of tens of microns, bubble implosions with and with no mass transfer are significantly different; smaller radii display a lower sensitivity. In this regime, accurate model predictions must, therefore, carefully select the correct value of the accommodation coefficient. For frequencies greater than 10^5 Hz, as a first approximation mass transfer can be ignored

    Hot dense capsule implosion cores produced by z-pinch dynamic hohlraum radiation

    Full text link
    Hot dense capsule implosions driven by z-pinch x-rays have been measured for the first time. A ~220 eV dynamic hohlraum imploded 1.7-2.1 mm diameter gas-filled CH capsules which absorbed up to ~20 kJ of x-rays. Argon tracer atom spectra were used to measure the Te~ 1keV electron temperature and the ne ~ 1-4 x10^23 cm-3 electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak compression values of Te, ne, and symmetry, indicating reasonable understanding of the hohlraum and implosion physics.Comment: submitted to Phys. Rev. Let

    A possible connection between Fast Radio Bursts and Gamma-Ray Bursts

    Full text link
    The physical nature of Fast Radio Bursts (FRBs), a new type of cosmological transients discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after GRB triggers.Comment: ApJL, in press. Title shortened following the suggestion of ApJL. A discussion on possible detection of FRBs following GRBs by Bannister et al. (2012, ApJ, 757, 38) is adde

    High yield fusion in a Staged Z-pinch

    Get PDF
    We simulate fusion in a Z-pinch; where the load is a xenon-plasma liner imploding onto a deuterium-tritium plasma target and the driver is a 2 MJ, 17 MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic, 2-1/2 D, radiation-MHD code, MACH2. During implosion a shock forms in the Xe liner, transporting current and energy radially inward. After collision with the DT, a secondary shock forms pre-heating the DT to several hundred eV. Adiabatic compression leads subsequently to a fusion burn, as the target is surrounded by a flux-compressed, intense, azimuthal-magnetic field. The intense-magnetic field confines fusion α\alpha-particles, providing an additional source of ion heating that leads to target ignition. The target remains stable up to the time of ignition. Predictions are for a neutron yield of 3.0×10193.0\times 10^{19} and a thermonuclear energy of 84 MJ, that is, 42 times greater than the initial, capacitor-stored energy

    The Maximal Invariance Group of Newtons's Equations for a Free Point Particle

    Get PDF
    The maximal invariance group of Newton's equations for a free nonrelativistic point particle is shown to be larger than the Galilei group. It is a semi-direct product of the static (nine-parameter) Galilei group and an SL(2,R)SL(2,R) group containing time-translations, dilations and a one-parameter group of time-dependent scalings called {\it expansions}. This group was first discovered by Niederer in the context of the free Schr\"odinger equation. We also provide a road map from the free nonrelativistic point particle to the equations of fluid mechanics to which the symmetry carries over. The hitherto unnoticed SL(2,R)SL(2, R) part of the symmetry group for fluid mechanics gives a theoretical explanation for an observed similarity between numerical simulations of supernova explosions and numerical simulations of experiments involving laser-induced implosions in inertial confinement plasmas. We also give examples of interacting many body systems of point particles which have this symmetry group.Comment: Plain TeX File: 15 Page

    Three-dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283

    Get PDF
    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response, of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km/s after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km/s after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward, and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.Comment: 12 pages, 9 figures, accepted to the Astrophysical Journa
    corecore