1 research outputs found

    Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities

    Full text link
    The explicit Euler scheme and similar explicit approximation schemes (such as the Milstein scheme) are known to diverge strongly and numerically weakly in the case of one-dimensional stochastic ordinary differential equations with superlinearly growing nonlinearities. It remained an open question whether such a divergence phenomenon also holds in the case of stochastic partial differential equations with superlinearly growing nonlinearities such as stochastic Allen-Cahn equations. In this work we solve this problem by proving that full-discrete exponential Euler and full-discrete linear-implicit Euler approximations diverge strongly and numerically weakly in the case of stochastic Allen-Cahn equations. This article also contains a short literature overview on existing numerical approximation results for stochastic differential equations with superlinearly growing nonlinearities.Comment: 65 page
    corecore