15 research outputs found

    Local Convolutions Cause an Implicit Bias towards High Frequency Adversarial Examples

    Full text link
    Adversarial Attacks are still a significant challenge for neural networks. Recent work has shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear full-width convolutional models, we hypothesize that the local (i.e. bounded-width) convolutional operations commonly used in current neural networks are implicitly biased to learn high frequency features, and that this is one of the root causes of high frequency adversarial examples. To test this hypothesis, we analyzed the impact of different choices of linear and nonlinear architectures on the implicit bias of the learned features and the adversarial perturbations, in both spatial and frequency domains. We find that the high-frequency adversarial perturbations are critically dependent on the convolution operation because the spatially-limited nature of local convolutions induces an implicit bias towards high frequency features. The explanation for the latter involves the Fourier Uncertainty Principle: a spatially-limited (local in the space domain) filter cannot also be frequency-limited (local in the frequency domain). Furthermore, using larger convolution kernel sizes or avoiding convolutions (e.g. by using Vision Transformers architecture) significantly reduces this high frequency bias, but not the overall susceptibility to attacks. Looking forward, our work strongly suggests that understanding and controlling the implicit bias of architectures will be essential for achieving adversarial robustness.Comment: 20 pages, 11 figures, 12 Table

    An analytic theory of shallow networks dynamics for hinge loss classification

    Full text link
    Neural networks have been shown to perform incredibly well in classification tasks over structured high-dimensional datasets. However, the learning dynamics of such networks is still poorly understood. In this paper we study in detail the training dynamics of a simple type of neural network: a single hidden layer trained to perform a classification task. We show that in a suitable mean-field limit this case maps to a single-node learning problem with a time-dependent dataset determined self-consistently from the average nodes population. We specialize our theory to the prototypical case of a linearly separable dataset and a linear hinge loss, for which the dynamics can be explicitly solved. This allow us to address in a simple setting several phenomena appearing in modern networks such as slowing down of training dynamics, crossover between rich and lazy learning, and overfitting. Finally, we asses the limitations of mean-field theory by studying the case of large but finite number of nodes and of training samples.Comment: 16 pages, 6 figure
    corecore