424 research outputs found

    Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data

    Full text link
    Paucity of large curated hand-labeled training data for every domain-of-interest forms a major bottleneck in the deployment of machine learning models in computer vision and other fields. Recent work (Data Programming) has shown how distant supervision signals in the form of labeling functions can be used to obtain labels for given data in near-constant time. In this work, we present Adversarial Data Programming (ADP), which presents an adversarial methodology to generate data as well as a curated aggregated label has given a set of weak labeling functions. We validated our method on the MNIST, Fashion MNIST, CIFAR 10 and SVHN datasets, and it outperformed many state-of-the-art models. We conducted extensive experiments to study its usefulness, as well as showed how the proposed ADP framework can be used for transfer learning as well as multi-task learning, where data from two domains are generated simultaneously using the framework along with the label information. Our future work will involve understanding the theoretical implications of this new framework from a game-theoretic perspective, as well as explore the performance of the method on more complex datasets.Comment: CVPR 2018 main conference pape

    DualLip: A System for Joint Lip Reading and Generation

    Full text link
    Lip reading aims to recognize text from talking lip, while lip generation aims to synthesize talking lip according to text, which is a key component in talking face generation and is a dual task of lip reading. In this paper, we develop DualLip, a system that jointly improves lip reading and generation by leveraging the task duality and using unlabeled text and lip video data. The key ideas of the DualLip include: 1) Generate lip video from unlabeled text with a lip generation model, and use the pseudo pairs to improve lip reading; 2) Generate text from unlabeled lip video with a lip reading model, and use the pseudo pairs to improve lip generation. We further extend DualLip to talking face generation with two additionally introduced components: lip to face generation and text to speech generation. Experiments on GRID and TCD-TIMIT demonstrate the effectiveness of DualLip on improving lip reading, lip generation, and talking face generation by utilizing unlabeled data. Specifically, the lip generation model in our DualLip system trained with only10% paired data surpasses the performance of that trained with the whole paired data. And on the GRID benchmark of lip reading, we achieve 1.16% character error rate and 2.71% word error rate, outperforming the state-of-the-art models using the same amount of paired data.Comment: Accepted by ACM Multimedia 202
    corecore