2 research outputs found

    Preconditioned conjugate gradient method for generalized least squares problems

    Get PDF
    AbstractA variant of the preconditioned conjugate gradient method to solve generalized least squares problems is presented. If the problem is min (Ax − b)TW−1(Ax − b) with A ∈ Rm×n and W ∈ Rm×m symmetric and positive definite, the method needs only a preconditioner A1 ∈ Rn×n, but not the inverse of matrix W or of any of its submatrices. Freund's comparison result for regular least squares problems is extended to generalized least squares problems. An error bound is also given

    Stable finite element algorithms for analysing the vertebral artery

    Get PDF
    The research described in this thesis began with a single long-term objective: modelling of the vertebral artery during chiropractic manipulation of the cervical spine. Although chiropractic treatment has become prevalent, the possible correlation between neck manipulation and subsequent stroke in patients has been the subject of debate without resolution. Past research has been qualitative or statistical, whereas resolution demands a fundamental understanding of the associated mechanics. Analysis in the thesis begins with a study of the anatomy and properties pertinent to the chiropractic problem. This indicates that the complexity of the problem will necessitate a long-term multidisciplinary effort including a nonlinear finite element formulation effective in analysing image data for soft tissue modelled as nearly incompressible. This leads to an assessment of existing finite element methods and the conclusion that new equation solving techniques are needed to ensure numerical stability. Three techniques for effectively eliminating the source of numerical instability are developed and demonstrated with the aid of original finite element codes. Two of the methods are derived as modifications of matrix decomposition algorithms, while the third method constitutes a new finite element formulation. In addition, the understanding gained in developing these methods is used to produce a theorem for assessing a different but related problem: deformation of a nearly incompressible material subjected to a single concentrated force. Throughout the thesis, an interdisciplinary path from chiropractic problem to numerical algorithms is outlined, and results are in the form of mathematical proofs and derivations of both existing and new methods
    corecore