158 research outputs found

    Towards a Universal Hot Carrier Degradation Model for SiGe HBTs Subjected to Electrical Stress

    Get PDF
    The objective of this work is to develop a generalizable understanding of the degradation mechanisms present in complementary Silicon-Germanium (SiGe) heterojunction bipolar transistors (HBTs) that can be used to not only predict the reliable lifetime of these devices but also overcome some of these aging limitations using clever device engineering. This broad motivation for understanding and improving SiGe HBT device reliability is explored through the following specific goals: 1) develop an understanding of the dominant hot carrier degradation sources across temperature (25 K – 573 K); 2) develop a broad understanding of all potentially vulnerable regions of damage within a SiGe HBT using electrically measured data, and how these degradations can be captured in a modeling framework; and 3) design optimized SiGe HBTs that can potentially overcome some of these device-level limitations in reliability across temperature. Being able to simulate the electrical degradation of a complex circuit with SiGe HBTs swinging dynamically on the output plane using a universal physics-based aging model is invaluable for any circuit designer optimizing for high performance and reliability.Ph.D

    BiCMOS Millimetre-wave low-noise amplifier

    Get PDF
    Abstract: Please refer to full text to view abstract.D.Phil. (Electrical and Electronic Engineering

    2 GHz +14 dBm CMOS power amplifier for Low Power Wide Area Networks

    Get PDF
    Abstract. The design of a radiofrequency power amplifier (RF PA) for narrowband low-power wide area networks is presented in this thesis. Particularly, this RF PA is compliant with the 3GPP TS 36.101 standard for a NB1 device within the Power Class 6. To minimize silicon area consumption, this CMOS RF PA employs a single-ended single-stage topology, avoiding inter-stage matching network inductors and output baluns. This RF PA produces +14 dBm of output power with a PAE of 25% and an EVM better than 4% (−28 dB). Also, its out-of-band and spurious emissions satisfy the standard specifications with a large margin. Furthermore, it provides high ruggedness, tolerating an antenna mismatch with a VSWR of 8:1

    Components for Wide Bandwidth Signal Processing in Radio Astronomy

    Get PDF
    In radio astronomy wider observing bandwidths are constantly desired for the reasons of improved sensitivity and velocity coverage. As observing frequencies move steadily higher these needs become even more pressing. In order to process wider bandwidths, components that can perform at higher frequencies are required. The chief limiting component in the area of digital spectrometers and correlators is the digitiser. This is the component that samples and quantises the bandwidth of interest for further digital processing, and must function at a sample rate of at least twice the operating bandwidth. In this work a range of high speed digitiser integrated circuits (IC) are designed using an advanced InP HBT semiconductor process and their performance limits analysed. These digitiser ICs are shown to operate at up to 10 giga-samples/s, significantly faster than existing digitisers, and a complete digitiser system incorporating one of these is designed and tested that operates at up to 4 giga-samples/s, giving 2 GHz bandwidth coverage. The digitisers presented include a novel photonic I/O digitiser which contains an integrated photonic interface and is the first digitiser device reported with integrated photonic connectivity. In the complementary area of analogue correlators the limiting component is the device which performs the multiplication operation inherent in the correlation process. A 15 GHz analogue multiplier suitable for such systems is designed and tested and a full noise analysis of multipliers in analogue correlators presented. A further multiplier design in SiGe HBT technology is also presented which offers benefits in the area of low frequency noise. In the effort to process even wider bandwidths, applications of photonics to digitisers and multipliers are investigated. A new architecture for a wide bandwidth photonic multiplier is presented and its noise properties analysed, and the use of photonics to increase the sample rate of digitisers examined

    A SiGe BiCMOS LNA for mm-wave applications

    Get PDF
    A 5 GHz continuous unlicensed bandwidth is available at millimeter-wave (mm-wave) frequencies around 60 GHz and offers the prospect for multi gigabit wireless applications. The inherent atmospheric attenuation at 60 GHz due to oxygen absorption makes the frequency range ideal for short distance communication networks. For these mm-wave wireless networks, the low noise amplifier (LNA) is a critical subsystem determining the receiver performance i.e., the noise figure (NF) and receiver sensitivity. It however proves challenging to realise high performance mm-wave LNAs in a silicon (Si) complementary metal-oxide semiconductor (CMOS) technology. The mm-wave passive devices, specifically on-chip inductors, experience high propagation loss due to the conductivity of the Si substrate at mm-wave frequencies, degrading the performance of the LNA and subsequently the performance of the receiver architecture. The research is aimed at realising a high performance mm-wave LNA in a Si BiCMOS technology. The focal points are firstly, the fundamental understanding of the various forms of losses passive inductors experience and the techniques to address these issues, and secondly, whether the performance of mm-wave passive inductors can be improved by means of geometry optimising. An associated hypothesis is formulated, where the research outcome results in a preferred passive inductor and formulates an optimised passive inductor for mm-wave applications. The performance of the mm-wave inductor is evaluated using the quality factor (Q-factor) as a figure of merit. An increased inductor Q-factor translates to improved LNA input and output matching performance and contributes to the lowering of the LNA NF. The passive inductors are designed and simulated in a 2.5D electromagnetic (EM) simulator. The electrical characteristics of the passive structures are exported to a SPICE netlist which is included in a circuit simulator to evaluate and investigate the LNA performance. Two LNAs are designed and prototyped using the 13μ-m SiGe BiCMOS process from IBM as part of the experimental process to validate the hypothesis. One LNA implements the preferred inductor structures as a benchmark, while the second LNA, identical to the first, replaces one inductor with the optimised inductor. Experimental verification allows complete characterization of the passive inductors and the performance of the LNAs to prove the hypothesis. According to the author's knowledge, the slow-wave coplanar waveguide (S-CPW) achieves a higher Q-factor than microstrip and coplanar waveguide (CPW) transmission lines at mm-wave frequencies implemented for the 130 nm SiGe BiCMOS technology node. In literature, specific S-CPW transmission line geometry parameters have previously been investigated, but this work optimises the signal-to-ground spacing of the S-CPW transmission lines without changing the characteristic impedance of the lines. Optimising the S-CPW transmission line for 60 GHz increases the Q-factor from 38 to 50 in simulation, a 32 % improvement, and from 8 to 10 in measurements. Furthermore, replacing only one inductor in the output matching network of the LNA with the higher Q-factor inductor, improves the input and output matching performance of the LNA, resulting in a 5 dB input and output reflection coefficient improvement. Although a 5 dB improvement in matching performance is obtained, the resultant noise and gain performance show no significant improvement. The single stage LNAs achieve a simulated gain and NF of 13 dB and 5.3 dB respectively, and dissipate 6 mW from the 1.5 V supply. The LNA focused to attain high gain and a low NF, trading off linearity and as a result obtained poor 1 dB compression of -21.7 dBm. The LNA results are not state of the art but are comparable to SiGe BiCMOS LNAs presented in literature, achieving similar gain, NF and power dissipation figures.Dissertation (MEng)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    InP DHBT Optimization for mm-Wave Power Applications

    Get PDF
    • …
    corecore