4 research outputs found

    On the Energy Proportionality of Distributed NoSQL Data Stores

    Full text link

    Implications of high energy proportional servers on cluster-wide energy proportionality

    No full text
    Cluster-level packing techniques have long been used to improve the energy proportionality of server clusters by masking the poor energy proportionality of individual servers. With the emergence of high energy proportional servers, we revisit whether cluster-level packing techniques are still the most effective way to achieve high cluster-wide energy proportionality. Our findings indicate that cluster-level packing techniques can eventually limit cluster-wide energy proportionality and it may be more beneficial to de-pend solely on server-level low power techniques. Server-level low power techniques generally require a high la-tency slack to be effective due to diminishing idle periods as server core count increases. In order for server-level low power techniques to be a viable alternative, the la-tency slack required for these techniques must be lowered. We found that server-level active low power modes offer the lowest latency slack, independent of server core count, and propose low power mode switching policies to meet the best-case latency slack under realistic conditions. By over-coming these major issues, we show that server-level low power modes can be a viable alternative to cluster-level packing techniques in providing high cluster-wide energy proportionality. 1

    Thermal Energy Storage for Datacenters with Phase Change Materials

    Full text link
    Datacenters, vast warehouses containing millions of servers that run the internet and the cloud, have experienced double digit growth for almost two decades. Datacenters cost hundreds of millions of dollars, with the largest now exceeding over a billion dollars each, and consume enormous amounts of power–over 2% of all electricity in the US and projected to increase up to 10% by 2030. The impact of such high compute density, with thousands of individual compute nodes packed together in a small space, is heat: every watt of power used by servers must be removed form the datacenter. This requires active cooling: air cooling is by far the most common with an air conditioner or other form of heat exchanger cooling air in the datacenter room then transporting heat outside the facility to heat exchanger or similar fixture. Such a system is simple, common, and functional, but inherently inefficient due to the nature of datacenter workloads. Datacenters primarily server user facing workloads, that is: the user requests a search or sends and email and their query prompts load in the datacenter. The query is handled locally, on a relative geographic scale, to provide a low response time and positive user experience. This necessitates globally distributed datacenter capacity, but also creates a diurnal load pattern whereby datacenters are most heavily loaded during the peak hours when users in their region of service are awake and active online versus the off hours when users are offline or asleep and query requests are low. Because datacenter infrastructure must be provisioned for peak load, servers, power distribution, and cooling infrastructure is significantly underutilized most of the time. This dissertation investigates the cooling needs of datacenters, and proposes to decouple the work and cooling needs. Specifically, we hypothesize that by storing thermal energy we can reshape the thermal profile of a datacenter to better balance cooling load throughout the day. We call this technique Thermal Time Shifting (TTS). First, we discuss how phase change materials (PCMs) enable TTS and evaluate the potential use scenarios of placing a small amount of PCM inside of servers for thermal energy storage. Next we dive deeper into the potential of thermal energy storage and propose Virtual Melting Temperatures (VMT), a technique that uses active job placement to control the melting and cooling of PCM to enable a much greater degree of control over the behavior of the thermal profile. Finally we propose and evaluate Thermal Gradient Transfer (TGT), a technique that uses direct water cooling to move heat straight from CPUs and GPUs to the wax for wider applicability and greater peak cooling load reduction.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/147726/1/skachm_1.pdfDescription of skachm_1.pdf : Restricted to UM users only
    corecore