7 research outputs found

    Implications of Selfish Neighbor Selection in Overlay Networks

    Full text link
    In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230); National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 020206

    Fairness-oriented overlay VPN topology construction

    Get PDF
    An important issue in dynamically constructed Virtual Private Networks (VPN) is how the overlay topology is created and maintained. Classical VPN topologies, such as hub-and-spoke or full-mesh, fail to remain convenient and viable when the number of nodes grows to as little as a few tens. Convenient topology formation mechanisms should be distributed, should permit incremental and dynamic operations, and should limit the number of nodes a new entry connects with. In this work, we show that approaches devised to create “short” networks, while yielding a significant total network throughput, may be severely affected by unfairness issues, i.e., different pair of nodes may experience a widely different throughput performance. Hence, we introduce a fairness-oriented topology formation algorithm for VPN. The proposed algorithm is incremental, meaning that the addition of a new node to the overlay topology does not imply rewiring of already established overlay links. Simulation results show that our proposed approach achieves high fairness levels, as quantified in terms of well known Jain's fairness index, meanwhile retaining satisfactory throughput performance

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    Embedding Games

    Full text link
    Large scale distributed computing infrastructures pose challenging resource management problems, which could be addressed by adopting one of two perspectives. On the one hand, the problem could be framed as a global optimization that aims to minimize some notion of system-wide (social) cost. On the other hand, the problem could be framed in a game-theoretic setting whereby rational, selfish users compete for a share of the resources so as to maximize their private utilities with little or no regard for system-wide objectives. This game-theoretic setting is particularly applicable to emerging cloud and grid environments, testbed platforms, and many networking applications. By adopting the first, global optimization perspective, this thesis presents NetEmbed: a framework, associated mechanisms, and implementations that enable the mapping of requested configurations to available infrastructure resources. By adopting the second, game-theoretic perspective, this thesis defines and establishes the premises of two resource acquisition mechanisms: Colocation Games and Trade and Cap. Colocation Games enable the modeling and analysis of the dynamics that result when rational, selfish parties interact in an attempt to minimize the individual costs they incur to secure shared resources necessary to support their application QoS or SLA requirements. Trade and Cap is a market-based scheduling and load-balancing mechanism that facilitates the trading of resources when users have a mixture of rigid and fluid jobs, and incentivizes users to behave in ways that result in better load-balancing of shared resources. In addition to developing their analytical underpinnings, this thesis establishes the viability of NetEmbed, Colocation Games, and Trade and Cap by presenting implementation blueprints and experimental results for many variants of these mechanisms. The results presented in this thesis pave the way for the development of economically-sound resource acquisition and management solutions in two emerging, and increasingly important settings. In pay-as-you-go settings, where pricing is based on usage, this thesis anticipates new service offerings that enable efficient marketplaces in the presence of non-cooperative, selfish agents. In settings where pricing is not a function of usage, this thesis anticipates the development of service offerings that enable trading of usage rights to maximize the utility of a shared infrastructure to its tenants

    Implications of selfish neighbor selection in overlay networks

    No full text
    Abstract — In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node’s “best response ” wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks constructed by naive nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even uninformed newcomers can extract near-optimal performance through naive wiring strategies. I
    corecore