548 research outputs found

    Implications of quantum gravity for dark matter searches with atom interferometers

    Get PDF
    In this brief paper, we show that atom interferometer experiments such as MAGIS, AION and AEDGE do not only have the potential to probe very light dark matter models, but will also probe quantum gravity. We show that the linear coupling of a singlet scalar dark matter particle to electrons or photons is already ruled out by our current understanding of quantum gravity coupled to data from torsion pendulum experiments. On the other hand, the quadratic coupling of scalar dark matter to electrons and photons has a large viable parameter space which will be probed by these atom interferometers. Implications for searches of quantum gravity are discussed

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph

    AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space

    Get PDF
    We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. This paper is based on a submission (v1) in response to the Call for White Papers for the Voyage 2050 long-term plan in the ESA Science Programme. ESA limited the number of White Paper authors to 30. However, in this version (v2) we have welcomed as supporting authors participants in the Workshop on Atomic Experiments for Dark Matter and Gravity Exploration held at CERN: ({\tt https://indico.cern.ch/event/830432/}), as well as other interested scientists, and have incorporated additional material

    AION: An Atom Interferometer Observatory and Network

    Get PDF
    We outline the experimental concept and key scientific capabilities of AION (Atom Interferometer Observatory and Network), a proposed UK-based experimental programme using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO/Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics. AION would complement other planned searches for dark matter, as well as probe mergers involving intermediate mass black holes and explore early universe cosmology. AION would share many technical features with the MAGIS experimental programme in the US, and synergies would flow from operating AION in a network with this experiment, as well as with other atom interferometer experiments such as MIGA, ZAIGA and ELGAR. Operating AION in a network with other gravitational wave detectors such as LIGO, Virgo and LISA would also offer many synergies

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

    Full text link
    MAGIS-100 is a next-generation quantum sensor under construction at Fermilab that aims to explore fundamental physics with atom interferometry over a 100-meter baseline. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes, and serve as a technology pathfinder for future gravitational wave detectors in a previously unexplored frequency band. It combines techniques demonstrated in state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world's best atomic clocks. MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sufficiently sensitive to detect gravitational waves from known sources. Here we present the science case for the MAGIS concept, review the operating principles of the detector, describe the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure

    Perspectives in Fundamental Physics in Space

    Full text link
    We discuss the fundamental principles underlying the current physical theories and the prospects of further improving their knowledge through experiments in space.Comment: Gravitational waves, gravitomagnetism, Equivalence Principle, Antimatter, Pioneer Anomaly, Lorentz invariance. To appear in IAA - Acta Astronautica Journal (2006

    Testing gravity with cold atom interferometry: Results and prospects

    Get PDF
    Atom interferometers have been developed in the last three decades as new powerful tools to investigate gravity. They were used for measuring the gravity acceleration, the gravity gradient, and the gravity-field curvature, for the determination of the gravitational constant, for the investigation of gravity at microscopic distances, to test the equivalence principle of general relativity and the theories of modified gravity, to probe the interplay between gravitational and quantum physics and to test quantum gravity models, to search for dark matter and dark energy, and they were proposed as new detectors for the observation of gravitational waves. Here I describe past and ongoing experiments with an outlook on what I think are the main prospects in this field and the potential to search for new physics
    corecore