14 research outputs found

    Implementing the asymptotically fast version of the elliptic curve primality proving algorithm

    Get PDF
    The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time O ((log N)^5) to prove the primality of N. An asymptotically fast version of it, attributed to J. O. Shallit, runs in time O ((log N)^4). The aim of this article is to describe this version in more details, leading to actual implementations able to handle numbers with several thousands of decimal digits

    Constructing elliptic curves of prime order

    Full text link
    We present a very efficient algorithm to construct an elliptic curve E and a finite field F such that the order of the point group E(F) is a given prime number N. Heuristically, this algorithm only takes polynomial time Otilde((\log N)^3), and it is so fast that it may profitably be used to tackle the related problem of finding elliptic curves with point groups of prime order of prescribed size. We also discuss the impact of the use of high level modular functions to reduce the run time by large constant factors and show that recent gonality bounds for modular curves imply limits on the time reduction that can be obtained.Comment: 13 page
    corecore