7 research outputs found

    Bird's-eye view on Noise-Based Logic

    Full text link
    Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as (i) What does practical determinism mean? (ii) Is noise-based logic a Turing machine? (iii) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, (iv) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.Comment: paper in pres

    Instantaneous noise-based logic

    Full text link
    We show two universal, Boolean, deterministic logic schemes based on binary noise timefunctions that can be realized without time-averaging units. The first scheme is based on a new bipolar random telegraph wave scheme and the second one makes use of the recent noise-based logic which is conjectured to be the brain's method of logic operations [Physics Letters A 373 (2009) 2338-2342]. Error propagation and error removal issues are also addressed.Comment: Accepted for publication in Fluctuation and Noise Letters (December 2010 issue

    Noise-based information processing: Noise-based logic and computing: what do we have so far?

    Full text link
    We briefly introduce noise-based logic. After describing the main motivations we outline classical, instantaneous (squeezed and non-squeezed), continuum, spike and random-telegraph-signal based schemes with applications such as circuits that emulate the brain functioning and string verification via a slow communication channel.Comment: Invited talk at the 21st International Conference on Noise and Fluctuations, Toronto, Canada, June 12-16, 201

    Towards brain-inspired computing

    Get PDF
    We present introductory considerations and analysis toward computing applications based on the recently introduced deterministic logic scheme with random spike (pulse) trains [Phys. Lett. A 373 (2009) 2338-2342]. Also, in considering the questions, "Why random?" and "Why pulses?", we show that the random pulse based scheme provides the advantages of realizing multivalued deterministic logic. Pulse trains are realized by an element called orthogonator. We discuss two different types of orthogonators, parallel (intersection-based) and serial (demultiplexer-based) orthogonators. The last one can be slower but it makes sequential logic design straightforward. We propose generating a multidimensional logic hyperspace [Physics Letters A 373 (2009) 1928-1934] by using the zero-crossing events of uncorrelated Gaussian electrical noises available in the chips. The spike trains in the hyperspace are non-overlapping, and are referred to as neuro-bits. To demonstrate this idea, we generate 3-dimensional hyperspace bases using 2 Gaussian noises as sources for neuro-bits, respectively. In such a scenario, the detection of different hyperspace basis elements may have vastly differing delays. We show that it is possible to provide an identical speed for all the hyperspace bases elements using correlated noise sources, and demonstrate this for the 2 neuro-bits situations. The key impact of this paper is to demonstrate that a logic design approach using such neuro-bits can yield a fast, low power processing and environmental variation tolerant means of designing computer circuitry. It also enables the realization of multi-valued logic, significantly increasing the complexity of computer circuits by allowing several neuro-bits to be transmitted on a single wire.Comment: 10 page

    Implementing digital logic with sinusoidal supplies

    No full text
    corecore